본 연구에서는 텍스트 마이닝 분석을 통해 한국 사회에서 행복과 불행이 갖는 의미를 탐색하였다. 자료수집 및 분석을 위하여 온라인 뉴스 포털에서 Word2Vec과 TF-IDF 방법을 사용하여 ‘행복’ 및 ‘불행’ 키워드와 유사한 단어를 추출했다. 또한 K-LIWC 사전을 사용하여 행복 및 불행과 연관된 단어들의 감성 속성에 대해 알아보았다. TF-IDF 분석 결과, 행복과 불행은 사회적 요인과 해당 년도의 사회적 이슈들과 각각 높은 관련성이 있는 것으로 관찰됐다. Word2Vec 분석에서는 ‘희망’이 6년 연속으로 행복과 유사성이 높은 단어로 나타났다. K-LIWC 분석에서 ‘돈재정적이슈’, ‘학교’, ‘의사소통’은 행복 및 불행과 모두 관련성이 높았다. 그밖에 ‘몸 상태와 증상’이 불행과 높은 관련성이 있는 범주로 나타났다. 이러한 결과를 바탕으로 본 연구의 의의, 제한점 및 후속연구에 대한 필요성을 논의하였다.