Ajou University repository

심층 컨볼루션 신경망을 활용한 영상 기반 콘크리트 압축강도 예측 모델
  • 장유진 ;
  • 안용한 ;
  • 유재인 ;
  • 김하영
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.author장유진-
dc.contributor.author안용한-
dc.contributor.author유재인-
dc.contributor.author김하영-
dc.date.issued2018-07-
dc.identifier.issn2005-6095-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/34834-
dc.description.abstract노후화된 아파트의 재고가 폭발적으로 증가하게 될 것으로 예상됨에 따라 콘크리트 시설물의 내구성을 향상시키기 위한 유지관리의 중요성이 증대되고 있다. 콘크리트 압축강도는 콘크리트 시설물의 내구성을 나타내는 대표적인 지표로, 시설물 유지관리를 위한 정밀 안전 진단에 있어서 중요한 항목이다. 그러나 콘크리트 압축강도를 측정하고 유지관리를 판단하는데 있어서 기존의 방법들은 시설물의 안전 문제, 고비용 문제, 낮은 신뢰성 문제 등의 한계점을 가진다. 기존의 콘크리트 시설물의 압축강도 진단 방법을 대체할 수 있는 방안으로, 본 연구는 심층 컨볼루션 신경망 기법을 활용하여 영상을 통해 콘크리트 압축강도를 예측할 수 있는 모델을 제안하였다. 또한 실험실 환경에서 콘크리트 시편 제작을 통해 구축한 콘크리트 압축강도 데이터셋을 적용하여 학습, 검증 및 테스트를 진행하였다. 그 결과 콘크리트 표면 영상으로 콘크리트 압축강도를 학습할 수 있음을 알 수 있었고, 본 연구에서 제안하는 모델의 유효성을 확인하였다.-
dc.language.isoKor-
dc.publisher한국건설관리학회-
dc.title심층 컨볼루션 신경망을 활용한 영상 기반 콘크리트 압축강도 예측 모델-
dc.title.alternativeImage based Concrete Compressive Strength Prediction Model using Deep Convolution Neural Network-
dc.typeArticle-
dc.citation.endPage51-
dc.citation.number4-
dc.citation.startPage43-
dc.citation.title한국건설관리학회 논문집-
dc.citation.volume19-
dc.identifier.bibliographicCitation한국건설관리학회 논문집, Vol.19 No.4, pp.43-51-
dc.identifier.doi10.6106/KJCEM.2018.19.4.043-
dc.subject.keyword시설물 유지관리-
dc.subject.keyword콘크리트 압축강도예측-
dc.subject.keyword심층 컨볼루션 신경망-
dc.subject.keywordFacility Management-
dc.subject.keywordConcrete Compressive Strength Prediction-
dc.subject.keywordDeep Convolution Neural Network-
dc.type.otherArticle-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Yoo, Jae-in Image
Yoo, Jae-in유재인
Department of Financial Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.