Ajou University repository

Interior regularity to the steady incompressible shear thinning fluids with non-standard growthoa mark
Citations

SCOPUS

1

Citation Export

DC Field Value Language
dc.contributor.authorBae, Hyeong Ohk-
dc.contributor.authorSo, Hyoungsuk-
dc.contributor.authorYoun, Yeonghun-
dc.date.issued2018-09-01-
dc.identifier.issn1556-181X-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/30393-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85054092764&origin=inward-
dc.description.abstractWe consider weak solutions to the equations of stationary motion of a class of non-Newtonianfluids which includes the power law model. The power depends on the spatial variable, which is motivated by electrorheologicalfluids. We prove the existence of second order derivatives of weak solutions in the shear thinning cases.-
dc.description.sponsorshipAcknowledgments. Bae was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2015R1D1A1A01057976 and 2016K2A9A2A 06005080) and Youn was supported by NRF (2015R1A4A1041675). The authors would like to thank referees for valuable comments and suggestions. The authors would like to express their sincere gratitudes Jihoon Ok for helpful discussions.-
dc.language.isoeng-
dc.publisherAmerican Institute of Mathematical Sciences-
dc.subject.meshInterior regularities-
dc.subject.meshPower-lawfluid-
dc.subject.meshRegularity-
dc.subject.meshSecond order derivatives-
dc.subject.meshShear thinning fluids-
dc.subject.meshStationary motions-
dc.subject.meshStrong solution-
dc.subject.meshVariable exponents-
dc.titleInterior regularity to the steady incompressible shear thinning fluids with non-standard growth-
dc.typeArticle-
dc.citation.endPage491-
dc.citation.number3-
dc.citation.startPage479-
dc.citation.titleNetworks and Heterogeneous Media-
dc.citation.volume13-
dc.identifier.bibliographicCitationNetworks and Heterogeneous Media, Vol.13 No.3, pp.479-491-
dc.identifier.doi10.3934/nhm.2018021-
dc.identifier.scopusid2-s2.0-85054092764-
dc.identifier.urlhttp://aimsciences.org/article/exportPdf-
dc.subject.keywordPower-lawfluid-
dc.subject.keywordRegularity-
dc.subject.keywordShear thinningfluid-
dc.subject.keywordStrong solution-
dc.subject.keywordVariable exponent space-
dc.type.otherArticle-
dc.identifier.pissn1556-1801-
dc.description.isoatrue-
dc.subject.subareaStatistics and Probability-
dc.subject.subareaEngineering (all)-
dc.subject.subareaComputer Science Applications-
dc.subject.subareaApplied Mathematics-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Bae, Hyeong Ohk Image
Bae, Hyeong Ohk배형옥
Department of Financial Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.