Ajou University repository

Data augmented dynamic time warping for skeletal action classificationoa mark
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorChang, Ju Yong-
dc.contributor.authorHeo, Yong Seok-
dc.date.issued2018-06-01-
dc.identifier.issn0916-8532-
dc.identifier.urihttps://aurora.ajou.ac.kr/handle/2018.oak/30246-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85048012069&origin=inward-
dc.description.abstractWe present a new action classification method for skeletal sequence data. The proposed method is based on simple nonparametric feature matching without a learning process. We first augment the training dataset to implicitly construct an exponentially increasing number of training sequences, which can be used to improve the generalization power of the proposed action classifier. These augmented training sequences are matched to the test sequence with the relaxed dynamic time warping (DTW) technique. Our relaxed formulation allows the proposed method to work faster and with higher efficiency than the conventional DTW-based method using a non-augmented dataset. Experimental results show that the proposed approach produces effective action classification results for various scales of real datasets.-
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP; Ministry of Science, ICT & Future Planning) (No. 2017R1C1B5017371) and the Research Grant of Kwang-woon University in 2018.-
dc.language.isoeng-
dc.publisherInstitute of Electronics, Information and Communication, Engineers, IEICE-
dc.subject.meshAction classifications-
dc.subject.meshAction classifier-
dc.subject.meshData augmentation-
dc.subject.meshDynamic time warping-
dc.subject.meshHigher efficiency-
dc.subject.meshLearning process-
dc.subject.meshTraining dataset-
dc.subject.meshTraining sequences-
dc.titleData augmented dynamic time warping for skeletal action classification-
dc.typeArticle-
dc.citation.endPage1571-
dc.citation.number6-
dc.citation.startPage1562-
dc.citation.titleIEICE Transactions on Information and Systems-
dc.citation.volumeE101D-
dc.identifier.bibliographicCitationIEICE Transactions on Information and Systems, Vol.E101D No.6, pp.1562-1571-
dc.identifier.doi10.1587/transinf.2017edp7275-
dc.identifier.scopusid2-s2.0-85048012069-
dc.identifier.urlhttps://www.jstage.jst.go.jp/article/transinf/E101.D/6/E101.D_2017EDP7275/_pdf/-char/en-
dc.subject.keywordAction classification-
dc.subject.keywordData augmentation-
dc.subject.keywordDynamic time warping-
dc.type.otherArticle-
dc.identifier.pissn1745-1361-
dc.description.isoatrue-
dc.subject.subareaSoftware-
dc.subject.subareaHardware and Architecture-
dc.subject.subareaComputer Vision and Pattern Recognition-
dc.subject.subareaElectrical and Electronic Engineering-
dc.subject.subareaArtificial Intelligence-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Heo,Yong Seok  Image
Heo,Yong Seok 허용석
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download