Ajou University repository

An Efficient and Reliable Flash Translation Layer for Chip-Level-Parallel Flash Memory
  • Kwon, Se Jin
Citations

SCOPUS

0

Citation Export

Advisor
정태선
Affiliation
아주대학교 일반대학원
Department
일반대학원 컴퓨터공학과
Publication Year
2012-08
Publisher
The Graduate School, Ajou University
Keyword
Flash MemoryFlash Translation Layer
Description
학위논문(박사)아주대학교 일반대학원 :컴퓨터공학과,2012. 8
Alternative Abstract
Flash memory offers attractive features, such as non-volatile, shock resistance, fast access, and low power consumption. As flash memory receives much attention in data storage market, low priced multi-level-cell (MLC) flash memory has been widely adopted in the large-scale storage systems despite of its low performance. In order to hinder the low performance of MLC-flash memory, there has been a system design which optimizes chip-level-parallelism. This design enlarges the unit of page and block thus simultaneously executing operations on multiple chips. Unfortunately previous algorithms of flash translation layer (FTL) generate many unused sectors within each page thus creating unnecessary write operations. As the concept of the chip-level-parallelism has been proposed recently, previous FTL algorithms show low compatibility to the chip-level-parallel flash memory. They execute unnecessary erase operations due to the low space utilization. As a solution, we propose “Hybrid Associative FTL (Hybrid-FTL)” for enhancing the performance of the chip-level-parallel flash memory system. The hybrid-FTL reduces the number of write operations by fully utilizing all the unused sectors. Furthermore, it reduces overall number of erase operations by using the state transition and reallocation blocks. It also prolongs the durability of the chip-level-parallel flash memory by modifying the merge operation. We have compared hybrid-FTL to previous FTL algorithms by simulating them on 1 Tbytes of 4-chip-parallel flash memory. We have retrieved various traces from PCs using different file systems (NTFS and EXT3) and embedded devices. According to our experiment results, the hybrid-FTL significantly reduces the number of write operations by avoiding the sub-page-sets. Furthermore, it reduces the number of erase operations and evenly distributes them by “Hybrid Associative Sector Translation (HAST)”.
Language
eng
URI
https://dspace.ajou.ac.kr/handle/2018.oak/9977
Fulltext

Type
Thesis
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Total Views & Downloads

File Download

  • There are no files associated with this item.