Ajou University repository

A Design of Multi-Head Attention Neural Network for UWB NLOS Identification in Outdoor
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorLee, Kyung Bo-
dc.contributor.authorLee, Jiye-
dc.contributor.authorPark, Jongho-
dc.contributor.authorKo, Young Bae-
dc.date.issued2024-03-01-
dc.identifier.urihttps://dspace.ajou.ac.kr/dev/handle/2018.oak/34062-
dc.description.abstractIn this paper, we introduce a method of classifying UWB CIR data into LOS and NLOS environments by applying the multi-head attention algorithm. The 1016 UWB CIR values sampled at 100 ms intervals are divided into 100 segments. By comparing the classification time and accuracy of the LSTM-CNN algorithm and the multi-head attention algorithm, it is shown that the latter achieved a classification accuracy of 94.41% for LOS/NLOS environments, outperforming the LSTM-CNN model.-
dc.language.isoeng-
dc.publisherKorean Institute of Communications and Information Sciences-
dc.titleA Design of Multi-Head Attention Neural Network for UWB NLOS Identification in Outdoor-
dc.typeArticle-
dc.citation.endPage364-
dc.citation.startPage361-
dc.citation.titleJournal of Korean Institute of Communications and Information Sciences-
dc.citation.volume49-
dc.identifier.bibliographicCitationJournal of Korean Institute of Communications and Information Sciences, Vol.49, pp.361-364-
dc.identifier.doi10.7840/kics.2024.49.3.361-
dc.identifier.scopusid2-s2.0-85189146880-
dc.identifier.urlhttps://engjournal.kics.or.kr/digital-library/90603-
dc.subject.keywordCIR-
dc.subject.keywordLOS/NLOS-
dc.subject.keywordMulti-head attention-
dc.subject.keywordUWB-
dc.description.isoafalse-
dc.subject.subareaComputer Networks and Communications-
dc.subject.subareaInformation Systems and Management-
dc.subject.subareaComputer Science (miscellaneous)-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Ko, Young-Bae Image
Ko, Young-Bae고영배
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.