Background and Aims: HCV infection can be successfully managed with antiviral therapies; however, progression to chronic liver disease states, including NAFLD, is common. There is currently no reliable in vitro model for investigating host-viral interactions underlying the link between HCV and NAFLD; although liver organoids (LOs) show promise, they currently lack nonparenchymal cells, which are key to modeling disease progression. Approach and Results: Here, we present a novel, multicellular LO model using a coculture system of macrophages and LOs differentiated from the same human pluripotent stem cells (PSCs). The cocultured macrophages shifted toward a Kupffer-like cell type, the liver-resident macrophages present in vivo, providing a suitable model for investigating NAFLD pathogenesis. With this multicellular Kupffer-like cell-containing LO model, we found that HCV infection led to lipid accumulation in LOs by upregulating host lipogenesis, which was more marked with macrophage coculture. Reciprocally, long-term treatment of LOs with fatty acids upregulated HCV amplification and promoted inflammation and fibrosis. Notably, in our Kupffer-like cell-containing LO model, the effects of 3 drugs for NASH that have reached phase 3 clinical trials exhibited consistent results with the clinical outcomes. Conclusions: Taken together, we introduced a multicellular LO model consisting of hepatocytes, Kupffer-like cells, and HSCs, which recapitulated host-virus intercommunication and intercellular interactions. With this novel model, we present a physiologically relevant system for the investigation of NAFLD progression in patients with HCV.
This work was supported by the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM4722331); by the National Research Foundation (NRF) grant funded by the Korean government (MSIT) (NRF-2022R1A2B5B02001644); by a grant (22213MFDS386) from the Ministry of Food and Drug Safety, Korea, in 2023; by the National Research Foundation (NRF) grant funded by the Korean government (MSIT) (NRF-2017M3A9G6068246); and by the Korea CDC grant (2023-NS-001-00).