Ajou University repository

Multi-Domain Rapid Enhancement Networks for Underwater Imagesoa mark
Citations

SCOPUS

2

Citation Export

Publication Year
2023-11-05
Citation
Sensors (Basel, Switzerland), Vol.23
Keyword
DCNNdomain adaptabilitymulti-domain machine learningperceptual lossunderwater image enhancement
All Science Classification Codes (ASJC)
Analytical ChemistryInformation SystemsAtomic and Molecular Physics, and OpticsBiochemistryInstrumentationElectrical and Electronic Engineering
Abstract
Images captured during marine engineering operations suffer from color distortion and low contrast. Underwater image enhancement helps to alleviate these problems. Many deep learning models can infer multi-source data, where images with different perspectives exist from multiple sources. To this end, we propose a multichannel deep convolutional neural network (MDCNN) linked to a VGG that can target multi-source (multi-domain) underwater image enhancement. The designed MDCNN feeds data from different domains into separate channels and implements parameters by linking VGGs, which improves the domain adaptation of the model. In addition, to optimize performance, multi-domain image perception loss functions, multilabel soft edge loss for specific image enhancement tasks, pixel-level loss, and external monitoring loss for edge sharpness preprocessing are proposed. These loss functions are set to effectively enhance the structural and textural similarity of underwater images. A series of qualitative and quantitative experiments demonstrate that our model is superior to the state-of-the-art Shallow UWnet in terms of UIQM, and the performance evaluation conducted on different datasets increased by 0.11 on average.
ISSN
1424-8220
Language
eng
URI
https://dspace.ajou.ac.kr/dev/handle/2018.oak/33791
DOI
https://doi.org/10.3390/s23218983
Type
Article
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Lee, Seok-Won Image
Lee, Seok-Won이석원
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.