Ajou University repository

Novel Strategy Toward Light Absorption Enhancement of Organic Solar Cells Using M13 Bacteriophage
  • Jun, Minju ;
  • Nguyen, Thanh Mien ;
  • Kim, Sung Jo ;
  • Kim, Na Yeong ;
  • Lee, Ah Young ;
  • Kim, Jong H. ;
  • Oh, Jin Woo ;
  • Seo, Ji Youn
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorJun, Minju-
dc.contributor.authorNguyen, Thanh Mien-
dc.contributor.authorKim, Sung Jo-
dc.contributor.authorKim, Na Yeong-
dc.contributor.authorLee, Ah Young-
dc.contributor.authorKim, Jong H.-
dc.contributor.authorOh, Jin Woo-
dc.contributor.authorSeo, Ji Youn-
dc.date.issued2023-12-01-
dc.identifier.issn2367-198X-
dc.identifier.urihttps://dspace.ajou.ac.kr/dev/handle/2018.oak/33689-
dc.description.abstractIn organic photovoltaics (OPVs), the development of efficient light-harvesting organic donor and acceptor materials and the design of a device structure with appropriate visible light transmittance play an important role in increasing their power conversion efficiency. Light manipulation strategies in OPV are widely used to improve photovoltaic performance. One of the most popular technologies is antireflective coating (ARC), which enhances light utilization in devices. However, ARC has been investigated less in OPV cells than in organic silicon solar cells. Herein, a novel approach that employs the natural biomaterial M13 bacteriophage (M13) as an intermediate layer with a thickness of a few nanometers between the hole transport layer (HTL) and indium tin oxide is investigated. The functional surface hydrophilicity, obtained by genetic manipulation of M13, improves the light transmittance by more than 84% over the visible wavelength range of the OPV cells. Furthermore, it enhances the coherence between the HTL and the photoactive layer. Therefore, the photocurrent density and power conversion efficiency significantly increase, producing a high photovoltaic performance. The proposed approach of using natural biomaterials is the basis for a novel, low-cost, and eco-friendly design for light manipulation in solar cells.-
dc.description.sponsorshipM.\u2010J.J. and T.M.N. contributed equally to this work. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1F1A1047203) and Korea Electric Power Corporation (R22XO02\u201003).-
dc.language.isoeng-
dc.publisherJohn Wiley and Sons Inc-
dc.subject.meshAnti reflective coatings-
dc.subject.meshHole transport layers-
dc.subject.meshLight manipulation-
dc.subject.meshM13 bacteriophage-
dc.subject.meshNatural biomaterials-
dc.subject.meshNovel strategies-
dc.subject.meshOrganic photovoltaic cell (OPVs)-
dc.subject.meshOrganic photovoltaics-
dc.subject.meshPhotovoltaic performance-
dc.subject.meshPower conversion efficiencies-
dc.titleNovel Strategy Toward Light Absorption Enhancement of Organic Solar Cells Using M13 Bacteriophage-
dc.typeArticle-
dc.citation.titleSolar RRL-
dc.citation.volume7-
dc.identifier.bibliographicCitationSolar RRL, Vol.7-
dc.identifier.doi10.1002/solr.202300684-
dc.identifier.scopusid2-s2.0-85172168115-
dc.identifier.urlhttps://onlinelibrary.wiley.com/journal/2367198x-
dc.subject.keywordlight manipulation-
dc.subject.keywordM13 bacteriophage-
dc.subject.keywordorganic photovoltaics-
dc.subject.keywordphotocurrent-
dc.subject.keywordpower conversion efficiency-
dc.description.isoafalse-
dc.subject.subareaElectronic, Optical and Magnetic Materials-
dc.subject.subareaAtomic and Molecular Physics, and Optics-
dc.subject.subareaEnergy Engineering and Power Technology-
dc.subject.subareaElectrical and Electronic Engineering-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Kim, Jong Hyun Image
Kim, Jong Hyun김종현
Department of Applied Chemistry & Biological Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.