Ajou University repository

High-Speed Network DDoS Attack Detection: A Surveyoa mark
  • Haseeb-ur-rehman, Rana M.Abdul ;
  • Aman, Azana Hafizah Mohd ;
  • Hasan, Mohammad Kamrul ;
  • Ariffin, Khairul Akram Zainol ;
  • Namoun, Abdallah ;
  • Tufail, Ali ;
  • Kim, Ki Hyung
Citations

SCOPUS

16

Citation Export

Publication Year
2023-08-01
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citation
Sensors, Vol.23
Keyword
cyber–physical systemdenial of servicedistributed denial of serviceexpress data pathhigh-speed networkintrusion detection systemmachine learning
Mesh Keyword
Cybe-physical systemsCyber-physical systemsData pathsDenial of ServiceDenialof- service attacksDistributed denial of serviceExpress data pathHigh-speed NetworksIntrusion Detection SystemsMachine-learning
All Science Classification Codes (ASJC)
Analytical ChemistryInformation SystemsAtomic and Molecular Physics, and OpticsBiochemistryInstrumentationElectrical and Electronic Engineering
Abstract
Having a large number of device connections provides attackers with multiple ways to attack a network. This situation can lead to distributed denial-of-service (DDoS) attacks, which can cause fiscal harm and corrupt data. Thus, irregularity detection in traffic data is crucial in detecting malicious behavior in a network, which is essential for network security and the integrity of modern Cyber–Physical Systems (CPS). Nevertheless, studies have shown that current techniques are ineffective at detecting DDoS attacks on networks, especially in the case of high-speed networks (HSN), as detecting attacks on the latter is very complex due to their fast packet processing. This review aims to study and compare different approaches to detecting DDoS attacks, using machine learning (ML) techniques such as k-means, K-Nearest Neighbors (KNN), and Naive Bayes (NB) used in intrusion detection systems (IDSs) and flow-based IDSs, and expresses data paths for packet filtering for HSN performance. This review highlights the high-speed network accuracy evaluation factors, provides a detailed DDoS attack taxonomy, and classifies detection techniques. Moreover, the existing literature is inspected through a qualitative analysis, with respect to the factors extracted from the presented taxonomy of irregular traffic pattern detection. Different research directions are suggested to support researchers in identifying and designing the optimal solution by highlighting the issues and challenges of DDoS attacks on high-speed networks.
ISSN
1424-8220
Language
eng
URI
https://dspace.ajou.ac.kr/dev/handle/2018.oak/33591
DOI
https://doi.org/10.3390/s23156850
Fulltext

Type
Review
Funding
This research was partially supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP2021-2021-0-01835) and the research grant (No. 2021-0-00590 Decentralized High-Performance: 2021-0-00590; IITP2021-2021-0-01835. This research was also partially supported by KIAT (Korea Institute for Advancement of Technology) grant funded by the Korean Government (MOTIE) (P0008703, The Competency Development Program for Industry Specialist) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1F1A1045861).
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Kim, Ki-Hyung  Image
Kim, Ki-Hyung 김기형
Department of Cyber Security
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.