Ajou University repository

Isovalent multi-component doping strategy for stabilizing cubic-Li7La3Zr2O12 with excellent Li mobilityoa mark
  • Lee, Han Uk ;
  • Han, Seungmin ;
  • Lee, Dong Geon ;
  • Ko, Hyunseok ;
  • Lee, Juhyun ;
  • Im, Won Bin ;
  • Song, Taeseup ;
  • Choi, Junghyun ;
  • Cho, Sung Beom
Citations

SCOPUS

10

Citation Export

DC Field Value Language
dc.contributor.authorLee, Han Uk-
dc.contributor.authorHan, Seungmin-
dc.contributor.authorLee, Dong Geon-
dc.contributor.authorKo, Hyunseok-
dc.contributor.authorLee, Juhyun-
dc.contributor.authorIm, Won Bin-
dc.contributor.authorSong, Taeseup-
dc.contributor.authorChoi, Junghyun-
dc.contributor.authorCho, Sung Beom-
dc.date.issued2023-09-01-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://dspace.ajou.ac.kr/dev/handle/2018.oak/33536-
dc.description.abstractStabilizing the cubic phase of Li7La3Zr2O12 (LLZO) through doping has been a challenging issue, as conventional aliovalent dopants often decrease Li ion mobility and induce unwanted phase transformations. In this study, a novel multi-component doping strategy is proposed that stabilizes the cubic phase of LLZO while maintaining high Li ion mobility. The practical isovalent ions and their combinations are screened using density-functional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations, identifying the most stable multi-component alloy configuration that can stabilize the robust cubic phase of LLZO. Our results demonstrate that the proposed Li7La3(Zr, Hf, Ce, Ru)2O12 composition has a stable cubic phase at low temperatures, which we validated through experimental synthesis. Our proposed doping strategy has the potential to advance the development of high-performance all-solid-state batteries.-
dc.description.sponsorshipThis research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (2021M3C1C3097516, and RS-2023-00209910). The computational resource was partially supported by National Supercomputing Center (KSC-2022-CRE-0352).-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.subject.meshAll-solid-state battery-
dc.subject.meshCubic phase-
dc.subject.meshDoping strategies-
dc.subject.meshIon Mobility-
dc.subject.meshMulti-component alloy-
dc.subject.meshMulticomponents-
dc.subject.meshReduction sintering temperature-
dc.subject.meshReduction-sintering-
dc.subject.meshSintering temperatures-
dc.subject.meshSolid-state electrolyte-
dc.titleIsovalent multi-component doping strategy for stabilizing cubic-Li7La3Zr2O12 with excellent Li mobility-
dc.typeArticle-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume471-
dc.identifier.bibliographicCitationChemical Engineering Journal, Vol.471-
dc.identifier.doi10.1016/j.cej.2023.144552-
dc.identifier.scopusid2-s2.0-85165247022-
dc.identifier.urlwww.elsevier.com/inca/publications/store/6/0/1/2/7/3/index.htt-
dc.subject.keywordAll-solid-state battery-
dc.subject.keywordLi7La3Zr2O12-
dc.subject.keywordMulti-component alloy-
dc.subject.keywordReduction sintering temperature-
dc.subject.keywordSolid-state electrolyte-
dc.description.isoatrue-
dc.subject.subareaChemistry (all)-
dc.subject.subareaEnvironmental Chemistry-
dc.subject.subareaChemical Engineering (all)-
dc.subject.subareaIndustrial and Manufacturing Engineering-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Cho, Sung Beom  Image
Cho, Sung Beom 조성범
Department of Materials Science Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.