Ajou University repository

ESCALB: An effective slave controller allocation-based load balancing scheme for multi-domain SDN-enabled-IoT networksoa mark
Citations

SCOPUS

62

Citation Export

Publication Year
2023-06-01
Publisher
King Saud bin Abdulaziz University
Citation
Journal of King Saud University - Computer and Information Sciences, Vol.35
Keyword
Analytical network process (ANP)ControllerInternet of Things (IoT)Load balancingSoftware-defined networking
All Science Classification Codes (ASJC)
Computer Science (all)
Abstract
In software-defined networking (SDN), several controllers improve the reliability as well as the scalability of networks such as the Internet-of-Things (IoT), with the distributed control plan. To achieve optimal results in IoT networks, an SDN can be employed to reduce the complexity associated with IoT and provide an improved quality-of-service (QoS). With time, it is likely expected that the demand for IoT will rise, and a large number of sensors will be connected, which can generate huge network traffic. With these possibilities, the SDN controllers processing capacity will be surpassed by the traffic sent by the IoT sensors. To handle this kind of challenge, and achieve promising results, a dynamic slave controller allocation with a premeditated mechanism can play a pivotal role to accomplish the task management and migration plan. Following this, we proposed an efficient slave controller allocation-based load balancing approach for a multi-domain SDN-enabled IoT network, which aims to transfer switches to a controller with idle resources effectively. Among several slave controllers for selecting a target controller, a multi-criteria decision-making (MCDM) strategy, i.e., an analytical network process (ANP) has been used in our approach to enrich communication metrics and maintain high-standard QoS statistics. Moreover, switch migration is modeled with knapsack 0/1 problem to achieve maximum utilization of the slave controllers. Our proposed scheme enabled with a flexible decision-making process for selecting controllers with varying resources. The results demonstrated with emulation environment show the effectiveness of the ESCALB.
Language
eng
URI
https://dspace.ajou.ac.kr/dev/handle/2018.oak/33397
DOI
https://doi.org/10.1016/j.jksuci.2023.101566
Fulltext

Type
Article
Funding
This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2023-2018-0-01431) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation).
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

ALI JEHAD Image
ALI JEHADJEHAD, ALI
Department of Software and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.