Ajou University repository

Compactness Lemma for sequences of divergence free Bochner measurable functions
Citations

SCOPUS

0

Citation Export

DC Field Value Language
dc.contributor.authorBae, Hyeong Ohk-
dc.contributor.authorWolf, Jörg-
dc.date.issued2023-07-01-
dc.identifier.issn0362-546X-
dc.identifier.urihttps://dspace.ajou.ac.kr/dev/handle/2018.oak/33308-
dc.description.abstractWe provide a local compactness lemma, that can be used for various models of incompressible fluids in a general domain, such as generalized Newtonian fluids. In particular, it helps for the proof of the existence of weak solution to those systems, when it comes to carrying out the passage to limit for sequences of weak solution to a corresponding approximate system. The key argument of our approach is the use of the local pressure decomposition in order to avoid the construction of a global pressure.-
dc.description.sponsorshipBae is supported by the Basic Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education and Technology ( NRF-2021R1A2C1093383 ) and Wolf, Republic of Korea by ( NRF-2017R1E1A1A01074536 ).-
dc.language.isoeng-
dc.publisherElsevier Ltd-
dc.subject.meshBochne function-
dc.subject.meshCompactness-
dc.subject.meshDivergence free-
dc.subject.meshExistence of weak solutions-
dc.subject.meshGeneralized Newtonian fluid-
dc.subject.meshIncompressible fluid-
dc.subject.meshLocal pressures-
dc.subject.meshWeak solution-
dc.titleCompactness Lemma for sequences of divergence free Bochner measurable functions-
dc.typeArticle-
dc.citation.titleNonlinear Analysis, Theory, Methods and Applications-
dc.citation.volume232-
dc.identifier.bibliographicCitationNonlinear Analysis, Theory, Methods and Applications, Vol.232-
dc.identifier.doi10.1016/j.na.2023.113288-
dc.identifier.scopusid2-s2.0-85150847470-
dc.identifier.urlhttps://www.journals.elsevier.com/nonlinear-analysis-
dc.subject.keywordBochner functions-
dc.subject.keywordCompactness-
dc.subject.keywordDivergence free-
dc.subject.keywordIncompressible fluid-
dc.description.isoafalse-
dc.subject.subareaAnalysis-
dc.subject.subareaApplied Mathematics-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Bae, Hyeong Ohk Image
Bae, Hyeong Ohk배형옥
Department of Financial Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.