Ajou University repository

Layer-engineered atomic-scale spalling of 2D van der Waals crystalsoa mark
  • Moon, Ji Yun ;
  • Kim, Do Hoon ;
  • Kim, Seung Il ;
  • Hwang, Hyun Sik ;
  • Choi, Jun Hui ;
  • Hyeong, Seok Ki ;
  • Ghods, Soheil ;
  • Park, Hyeong Gi ;
  • Kim, Eui Tae ;
  • Bae, Sukang ;
  • Lee, Seoung Ki ;
  • Son, Seok Kyun ;
  • Lee, Jae Hyun
Citations

SCOPUS

15

Citation Export

DC Field Value Language
dc.contributor.authorMoon, Ji Yun-
dc.contributor.authorKim, Do Hoon-
dc.contributor.authorKim, Seung Il-
dc.contributor.authorHwang, Hyun Sik-
dc.contributor.authorChoi, Jun Hui-
dc.contributor.authorHyeong, Seok Ki-
dc.contributor.authorGhods, Soheil-
dc.contributor.authorPark, Hyeong Gi-
dc.contributor.authorKim, Eui Tae-
dc.contributor.authorBae, Sukang-
dc.contributor.authorLee, Seoung Ki-
dc.contributor.authorSon, Seok Kyun-
dc.contributor.authorLee, Jae Hyun-
dc.date.issued2022-11-02-
dc.identifier.urihttps://dspace.ajou.ac.kr/dev/handle/2018.oak/33133-
dc.description.abstractTransition-metal dichalcogenides (TMDCs), whose physical properties can be modified by the number of layers within the atomic thickness range, are emerging as an essential active interlayer for nanoelectronic devices based on van der Waals (vdW) heterostructures. Here, we show the atomic spalling of vdW crystals that achieves large-area TMDCs with a controlled number of layers. Unlike 3D covalent network solids, the TMDCs are layered crystals featuring strong in-plane covalent bonding and weak out-of-plane vdW interaction, which allow the crack propagation depth to be reduced to the atomic scale. By adjusting the residual stress of the stressor film, we controlled the crack propagation depth at a scale corresponding to the monolayer thickness of the TMDCs. Consequently, mono-, bi-, and trilayer TMDCs were selectively separated from the vdW crystals. The presented results show huge potential for the manufacture of layer-engineered, high-quality vdW materials, which can be developed into functional optoelectronic devices.-
dc.description.sponsorshipThis work was supported by the National Research Foundation (NRF) of Korea ( NRF-2020R1A4A4079397, NRF-2021R1A2C2012649, NRF-2021M3H1A104892211, and NRF-2021R1C1C1004211 ). J.-H.L. acknowledges support from the POSCO Science Fellowship and the Ajou Research Fund .-
dc.language.isoeng-
dc.publisherCell Press-
dc.subject.meshAtomic scale-
dc.subject.meshCracks propagation-
dc.subject.meshDichalcogenides-
dc.subject.meshMAP 6: development-
dc.subject.meshNumber of layers-
dc.subject.meshTransition metal dichalcogenides-
dc.subject.meshVan der Waal-
dc.subject.meshVan der waal heterostructure-
dc.subject.meshVan der waal material-
dc.titleLayer-engineered atomic-scale spalling of 2D van der Waals crystals-
dc.typeArticle-
dc.citation.endPage3946-
dc.citation.startPage3935-
dc.citation.titleMatter-
dc.citation.volume5-
dc.identifier.bibliographicCitationMatter, Vol.5, pp.3935-3946-
dc.identifier.doi10.1016/j.matt.2022.07.021-
dc.identifier.scopusid2-s2.0-85144276940-
dc.identifier.urlwww.cell.com/matter-
dc.subject.keywordcrack propagation-
dc.subject.keywordMAP 6: Development-
dc.subject.keywordMoS2-
dc.subject.keywordMoSe2-
dc.subject.keywordphotodetector-
dc.subject.keywordspalling-
dc.subject.keywordtransition metal dichalcogenides-
dc.subject.keywordvan der Waals materials-
dc.subject.keywordvdW heterostructure-
dc.subject.keywordWSe2-
dc.description.isoatrue-
dc.subject.subareaMaterials Science (all)-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Total Views & Downloads

File Download

  • There are no files associated with this item.