Ajou University repository

Neural Myerson Auction for Truthful and Energy-Efficient Autonomous Aerial Data Deliveryoa mark
  • Lee, Haemin ;
  • Kwon, Sean ;
  • Jung, Soyi ;
  • Kim, Joongheon
Citations

SCOPUS

7

Citation Export

Publication Year
2022-12-01
Publisher
Korean Institute of Communications and Information Sciences
Citation
Journal of Communications and Networks, Vol.24, pp.730-741
Keyword
Auctiondata deliverydeep learningtruthfulnessunmanned aerial networks (UAVs)
Mesh Keyword
Aerial networksAuctionData deliveryDeep learningEnergy efficientIdeal solutionsSecond-price auctionSurveillance systemsTruthfulnessUnmanned aerial network (UAV)
All Science Classification Codes (ASJC)
Information SystemsComputer Networks and Communications
Abstract
A successful deployment of drones provides an ideal solution for surveillance systems. Using drones for surveillance can provide access to areas that may be difficult or impossible to reach by humans or in-land vehicles gathering images or video recordings of a specific target in their coverage. Therefore, we introduces a data delivery drone to transfer collected surveillance data in harsh communication conditions. This paper proposes a Myerson auction-based asynchronous data delivery in an aerial distributed data platform in surveillance systems taking battery limitation and long flight constraints into account. In this paper, multiple delivery drones compete to offer data transfer to a single fixed-location surveillance drone. Our proposed Myerson auction based algorithm, which uses the truthful second-price auction (SPA) as a baseline, is to maximize the seller’s revenue while meeting several desirable properties, i.e., individual rationality and incentive compatibility while pursuing truthful operations. On top of this SPA-based operations, a deep learning based framework is additionally designed for delivery performance improvements.(Figure Presented)
Language
eng
URI
https://dspace.ajou.ac.kr/dev/handle/2018.oak/33001
DOI
https://doi.org/10.23919/jcn.2022.000033
Fulltext

Type
Article
Funding
This research is supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2022-2017-0-01637) supervised by the IITP (Institute for Information & Commun. Technology Planning & Evaluation) and also by the Institute of Information & Commun. Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2021-0-00794, Development of 3D Spatial Mobile Communication Technology).
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Jung, Soyi Image
Jung, Soyi정소이
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.