Ajou University repository

Thermal Estimation of Modular Multilevel Converter Submodule Using Deep Regression on GRU and LSTM Networkoa mark
Citations

SCOPUS

6

Citation Export

DC Field Value Language
dc.contributor.authorPark, Ye Seul-
dc.contributor.authorChoi, Hye Won-
dc.contributor.authorLee, Kyo Beum-
dc.contributor.authorLee, Jung Won-
dc.date.issued2022-01-01-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://dspace.ajou.ac.kr/dev/handle/2018.oak/32829-
dc.description.abstractThis paper proposed a GRU/LSTM-based deep regression model for thermal estimation of modular multilevel converter submodule. The MMC is composed of many submodules with the power semiconductors such as IGBTs and MOSFETs. The switches are the main components determining the reliability of the MMCs, and the swing of junction temperature causes most switch failures in the power semiconductors. So, thermal estimation is essential to improve the reliability of the MMC systems. Thermal modeling is a regression problem of time-series data, considering various environmental conditions. The conventional models cannot reflect the complex environmental conditions due to their fixed mathematic formulas. Therefore, this paper proposes the deep regression model that can estimate the junction temperature by using the arm current of the MMC submodule. The proposed model improved the accuracy of thermal estimation by more than 7.2 times compared to the existing method. Moreover, it does not require pre-processing and takes about 4.5ms on average to process 100ms data.-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.meshDeep regression-
dc.subject.meshGated recurrent unit-
dc.subject.meshInsulatedgate bipolar transistor (IGBTs)-
dc.subject.meshLong shor term memory-
dc.subject.meshModular multilevel converter-
dc.subject.meshModulars-
dc.subject.meshMultilevel converter-
dc.subject.meshRecurrent neural network-
dc.subject.meshThermal-
dc.subject.meshThermal estimation-
dc.titleThermal Estimation of Modular Multilevel Converter Submodule Using Deep Regression on GRU and LSTM Network-
dc.typeArticle-
dc.citation.endPage75353-
dc.citation.startPage75343-
dc.citation.titleIEEE Access-
dc.citation.volume10-
dc.identifier.bibliographicCitationIEEE Access, Vol.10, pp.75343-75353-
dc.identifier.doi10.1109/access.2022.3191643-
dc.identifier.scopusid2-s2.0-85135242681-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639-
dc.subject.keyworddeep regression-
dc.subject.keywordgated recurrent unit (GRU)-
dc.subject.keywordlong short term memory (LSTM)-
dc.subject.keywordmodular multilevel converter (MMC)-
dc.subject.keywordrecurrent neural network (RNN)-
dc.subject.keywordThermal estimation-
dc.description.isoatrue-
dc.subject.subareaComputer Science (all)-
dc.subject.subareaMaterials Science (all)-
dc.subject.subareaEngineering (all)-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

 Lee, Kyo-Beum Image
Lee, Kyo-Beum이교범
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.