Ajou University repository

Modeling of a methanol synthesis process to utilize CO2 in the exhaust gas from an engine plant
Citations

SCOPUS

5

Citation Export

Publication Year
2022-08-01
Publisher
Springer
Citation
Korean Journal of Chemical Engineering, Vol.39, pp.1989-1998
Keyword
CO2 ReductionEngine PlantExhaust GasMethanol SynthesisTechno-economic Analysis
All Science Classification Codes (ASJC)
Chemistry (all)Chemical Engineering (all)
Abstract
We investigated the conversion of CO2 in the exhaust gas of an engine plant into methanol. The process consists of CO2 purification by an acid gas removal unit (AGRU), mixed reforming, and methanol synthesis. The AGRU removes a large amount of inert gas, yielding CO2 of 98% purity at a recovery rate of 90% for use as feed to the reformer. The reformer temperature of 900 °C led to the almost total consumption of CH4. In the methanol synthesis reaction, the utility temperature had a greater influence on the conversion and methanol production rate than the inlet temperature. The optimal temperature was determined as 180 °C. Because the amount of hydrogen in the reformer effluent produced by dry reforming was insufficient, the steam available in the engine plant was used for mixed (dry and steam) reforming. The steam increased the hydrogen and methanol production rate; however, the compression cost was too high, and there exists an optimal amount of steam in the feed. The techno-economic analysis of the optimal conditions showed that utilization of CO2 in the exhaust gas along with freely available steam is economically feasible and reduces CO2 emissions by over 85%.
Language
eng
URI
https://dspace.ajou.ac.kr/dev/handle/2018.oak/32687
DOI
https://doi.org/10.1007/s11814-022-1124-1
Fulltext

Type
Article
Funding
This research was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF), funded by the Ministry of Science and ICT of the Republic of Korea (No. 2021M1A2A2037010).
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Park, Myung-June Image
Park, Myung-June박명준
Department of Chemical Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.