Ajou University repository

Identification of Power System Oscillation Modes Using Empirical Wavelet Transform and Yoshida-Bertecco Algorithmoa mark
Citations

SCOPUS

8

Citation Export

DC Field Value Language
dc.contributor.authorPhilip, Joice G.-
dc.contributor.authorYang, Yejin-
dc.contributor.authorJung, Jaesung-
dc.date.issued2022-01-01-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://dspace.ajou.ac.kr/dev/handle/2018.oak/32682-
dc.description.abstractOscillations occurring in the power system are one of the biggest threats to its secure operation. Although they occur rarely, these oscillations can cause severe damage to the power system if they are not detected at the earliest. Hence, this work focuses on identifying the parameters of oscillations in the power system using a combination of Empirical Wavelet Transform and Yoshida-Bertecco algorithm. As these oscillations occur rarely, a preprocessing method based on Teager Kaiser Energy Operator is used to check whether the signal under consideration contains any oscillation modes. The effectiveness of the proposed method is tested using a test signal, simulated power system signal, and PMU data from an actual power system under various levels of noise contamination. Further, the performance of the proposed method is compared with a VMD-Hilbert transform-based, Prony-based, and SSI-based methods in the literature. Results reveal the superiority of the proposed method irrespective of the parameters of the signal under consideration.-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subject.meshEmpirical wavelet transform-
dc.subject.meshEnergy operators-
dc.subject.meshMode decomposition-
dc.subject.meshPower-
dc.subject.meshPower system-
dc.subject.meshPower system oscillations-
dc.subject.meshProny’-
dc.subject.meshS-method-
dc.subject.meshSignal processing algorithms-
dc.subject.meshStochastic subspace identification-
dc.subject.meshTeager kaiser energy operator-
dc.subject.meshVariational mode decomposition-
dc.subject.meshWavelet-analysis-
dc.subject.meshWavelets transform-
dc.titleIdentification of Power System Oscillation Modes Using Empirical Wavelet Transform and Yoshida-Bertecco Algorithm-
dc.typeArticle-
dc.citation.endPage48935-
dc.citation.startPage48927-
dc.citation.titleIEEE Access-
dc.citation.volume10-
dc.identifier.bibliographicCitationIEEE Access, Vol.10, pp.48927-48935-
dc.identifier.doi10.1109/access.2022.3172295-
dc.identifier.scopusid2-s2.0-85129640309-
dc.identifier.urlhttp://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639-
dc.subject.keywordEmpirical wavelet transform-
dc.subject.keywordpower system oscillations-
dc.subject.keywordProny's method-
dc.subject.keywordstochastic subspace identification-
dc.subject.keywordTeager Kaiser energy operator-
dc.subject.keywordvariational mode decomposition-
dc.description.isoatrue-
dc.subject.subareaComputer Science (all)-
dc.subject.subareaMaterials Science (all)-
dc.subject.subareaEngineering (all)-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Jung, Jaesung  Image
Jung, Jaesung 정재성
Department of Electrical and Computer Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.