A transparent and flexible film capable of shielding electromagnetic waves over a wide range of frequencies (X and Ku bands, 8-18 GHz) is prepared. The electromagnetic wave shielding film is fabricated using the excellent transmittance, electrical conductivity, and thermal stability of indium tin oxide (ITO), a representative transparent conductive oxide. The inherent mechanical brittleness of oxide ceramics is overcome by adopting a nanobranched structure. In addition, mechanical stability is maintained even after repeated bending experiments (200 »000 times). The produced transparent and flexible shielding film is applied to practical GHz devices (Wi-Fi and LTE devices), and signal sensitivity is confirmed to decrease. Therefore, it can be widely applied to various transparent and flexible electronic devices.
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (NRF-2019R1A2C1006972 and 2020R1A4A4079397).