Multi-layered network-based pathway activity inference using directed random walks: Application to predicting clinical outcomes in urologic canceroa mark
Motivation: To better understand the molecular features of cancers, a comprehensive analysis using multi-omics data has been conducted. In addition, a pathway activity inference method has been developed to facilitate the integrative effects of multiple genes. In this respect, we have recently proposed a novel integrative pathway activity inference approach, iDRW and demonstrated the effectiveness of the method with respect to dichotomizing two survival groups. However, there were several limitations, such as a lack of generality. In this study, we designed a directed gene-gene graph using pathway information by assigning interactions between genes in multiple layers of networks. Results: As a proof-of-concept study, it was evaluated using three genomic profiles of urologic cancer patients. The proposed integrative approach achieved improved outcome prediction performances compared with a single genomic profile alone and other existing pathway activity inference methods. The integrative approach also identified common/cancer-specific candidate driver pathways as predictive prognostic features in urologic cancers. Furthermore, it provides better biological insights into the prioritized pathways and genes in an integrated view using a multi-layered gene-gene network. Our framework is not specifically designed for urologic cancers and can be generally applicable for various datasets. VC The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions.