Engineering of an EpCAM-targeting cyclic peptide to improve the EpCAM-mediated cellular internalization and tumor accumulation of a peptide-fused antibody
Fusion of a target-specific peptide to a full-length antibody (Ab) can result in a peptide–Ab fusion protein with additional specificity and enhanced activity. We recently developed an intracellular pan-RAS–targeting cytosol-penetrating antibody, RT22-ep59, in which a tumor-specific targeting ability was achieved via the fusion of an epithelial cell adhesion molecule (EpCAM) targeting cyclic peptide (ep133). Here, the aim was to enhance EpCAM-mediated endocytosis and tumor accumulation of the peptide-fused RAS-targeting Ab. Accordingly, we engineered a cyclic peptide (from ep133) that has stronger affinity for EpCAM by using yeast surface display technology and then rationally designed cyclic peptides in the Ab-fused form to enhance colloidal stability. The finally engineered EpCAM-targeting cyclic peptide (ep6)–fused Ab, ep6Ras37, has ∼10-fold stronger affinity (KD ≈ 1.9 nM) for EpCAM than that of RT22-ep59, without deterioration of biophysical properties. Compared with the parental antibody (RT22-ep59), ep6Ras37 more efficiently reached the cytosol of EpCAM-expressing cells and showed greater preferential tumor homing and accumulation in mice bearing EpCAM-expressing LoVo xenograft tumors. Thus, the high-affinity EpCAM-targeting peptide ensures efficient cellular internalization and better tumor accumulation of the peptide-fused Ab.
This work was supported by the National Research Foundation of Korea (NRF) [grant number 2021R1A2C2003362 to YSK and the Priority Research Centers Program (grant number 2019R1A6A1A11051471 to YSK)], funded by the Korean government ( MSIT ). The sponsors had no role in study design; in the collection, analysis, and interpretation of the data; in the writing of the report; and in the decision to submit the article for publication.