Ajou University repository

High-speed imaging of second-harmonic generation in mos2 bilayer under femtosecond laser ablationoa mark
Citations

SCOPUS

7

Citation Export

Publication Year
2021-07-01
Publisher
MDPI AG
Citation
Nanomaterials, Vol.11
Keyword
Laser ablationSecond-harmonic generationTransition-metal dichalcogenidesTwisted bilayer
All Science Classification Codes (ASJC)
Chemical Engineering (all)Materials Science (all)
Abstract
We report an in situ characterization of transition-metal dichalcogenide (TMD) monolayers and twisted bilayers using a high-speed second-harmonic generation (SHG) imaging technique. High-frequency laser modulation and galvano scanning in the SHG imaging enabled a rapid identification of the crystallinity in the TMD, including the orientation and homogeneity with a speed of 1 frame/s. For a twisted bilayer MoS2, we studied the SHG peak intensity and angles as a function of the twist angle under a strong interlayer coupling. In addition, rapid SHG imaging can be used to visualize laser-induced ablation of monolayer and bilayer MoS2 in situ under illumination by a strong femtosecond laser. Importantly, we observed a characteristic threshold behavior; the ablation process occurred for a very short time duration once the preheating condition was reached. We investigated the laser thinning of the bilayer MoS2 with different twist angles. When the twist angle was 0°, the SHG decreased by approximately one-fourth of the initial intensity when one layer was removed. Conversely, when the twist angle was approximately 60° (the SHG intensity was suppressed), the SHG increased abruptly close to that of the nearby monolayer when one layer was removed. Precise layer-by-layer control was possible because of the unique threshold behavior of the laser-induced ablation.
ISSN
2079-4991
Language
eng
URI
https://dspace.ajou.ac.kr/dev/handle/2018.oak/32116
DOI
https://doi.org/10.3390/nano11071786
Fulltext

Type
Article
Funding
Funding: This work was supported by the Midcareer Researcher Program (2020R1A2C1005735) and Basic Science Research Program (2021R1A6A1A10044950) through a National Research Foundation grant funded by the Korea Government and by the Human Resources Program in Energy Technology (20184030202220) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government.
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

LEE, Soonil Image
LEE, Soonil이순일
Department of Physics
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.