The urban aerial mobility (UAM) system, such as drone taxi or air taxi, is one of future on-demand transportation networks. Among them, electric vertical takeoff and landing (eVTOL) is one of UAM systems that is for identifying the locations of passengers, flying to the positions where the passengers are located, loading the passengers, and delivering the passengers to their destinations. In this paper, we propose a distributed deep reinforcement learning where the agents are formulated as eVTOL vehicles that can compute the optimal passenger transportation routes under the consideration of passenger behaviors, collisions among eVTOL, and eVTOL battery status.
This research was jointly supported by National Research Foundation of Korea, Republic of Korea ( 2019R1A2C4070663 ) and Korea University Future Research Grant, Republic of Korea (KU-FRG).