p-n heterojunction was constructed using p-type Cupric oxide (CuO) and n-type Tin (IV) oxide (SnO2) nanoparticles using chemical synthesis and annealing method. The synthesized SnO2-CuO nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), etc. The methylene blue (MB) degradation ability of the synthesized SnO2-CuO nanocomposite was investigated under UV illumination. Compared to the undoped SnO2, the SnO2-CuO p-n heterojunction exhibited enhanced MB degradation capability due the effective separation of electron-holes pair that suppresses the recombination. Based on the experimental results, the charge dynamics and the probable dye degradation mechanism via SnO2-CuO nanoparticles was proposed.
This work was supported by the basic Research & Development program [NRF-2019R1A2C2003804 and NRF-2017R1D1 A1B03035201] of the Ministry of Science and ICT, Republic of Korea. This work was also supported by Ajou University.