Ajou University repository

Super-Nernstian pH Sensor Based on Anomalous Charge Transfer Doping of Defect-Engineered Graphene
  • Jung, Su Ho ;
  • Seo, Young Min ;
  • Gu, Taejun ;
  • Jang, Wonseok ;
  • Kang, Seog Gyun ;
  • Hyeon, Yuhwan ;
  • Hyun, Sang Hwa ;
  • Lee, Jae Hyun ;
  • Whang, Dongmok
Citations

SCOPUS

35

Citation Export

DC Field Value Language
dc.contributor.authorJung, Su Ho-
dc.contributor.authorSeo, Young Min-
dc.contributor.authorGu, Taejun-
dc.contributor.authorJang, Wonseok-
dc.contributor.authorKang, Seog Gyun-
dc.contributor.authorHyeon, Yuhwan-
dc.contributor.authorHyun, Sang Hwa-
dc.contributor.authorLee, Jae Hyun-
dc.contributor.authorWhang, Dongmok-
dc.date.issued2021-01-13-
dc.identifier.urihttps://dspace.ajou.ac.kr/dev/handle/2018.oak/31692-
dc.description.abstractThe conventional pH sensor based on the graphene ion-sensitive field-effect transistor (Gr-ISFET), which operates with an electrostatic gating at the solution-graphene interface, cannot have a pH sensitivity above the Nernst limit (∼59 mV/pH). However, for accurate detection of the pH levels of an aqueous solution, an ultrasensitive pH sensor that can exceed the theoretical limit is required. In this study, a novel Gr-ISFET-based pH sensor is fabricated using proton-permeable defect-engineered graphene. The nanocrystalline graphene (nc-Gr) with numerous grain boundaries allows protons to penetrate the graphene layer and interact with the underlying pH-dependent charge-transfer dopant layer. We analyze the pH sensitivity of nc-Gr ISFETs by adjusting the grain boundary density of graphene and the functional group (OH-, NH2-, CH3-) on the SiO2 surface, confirming an unusual negative shift of the charge-neutral point (CNP) as the pH of the solution increases and a super-Nernstian pH response (approximately -140 mV/pH) under optimized conditions.-
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A4A4079397 and 2017R1A2B2010663).-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.subject.meshCharge transfer doping-
dc.subject.meshGrain boundary densities-
dc.subject.meshGraphene layers-
dc.subject.meshNanocrystallines-
dc.subject.meshNegative shift-
dc.subject.meshOptimized conditions-
dc.subject.meshTheoretical limits-
dc.subject.meshUltra sensitives-
dc.titleSuper-Nernstian pH Sensor Based on Anomalous Charge Transfer Doping of Defect-Engineered Graphene-
dc.typeArticle-
dc.citation.endPage42-
dc.citation.startPage34-
dc.citation.titleNano Letters-
dc.citation.volume21-
dc.identifier.bibliographicCitationNano Letters, Vol.21, pp.34-42-
dc.identifier.doi10.1021/acs.nanolett.0c02259-
dc.identifier.pmid33136414-
dc.identifier.scopusid2-s2.0-85096825512-
dc.identifier.urlhttp://pubs.acs.org/journal/nalefd-
dc.subject.keywordcharge transfer-
dc.subject.keyworddefect engineering-
dc.subject.keywordgraphene-
dc.subject.keywordNernst limit-
dc.subject.keywordpH sensor-
dc.description.isoafalse-
dc.subject.subareaBioengineering-
dc.subject.subareaChemistry (all)-
dc.subject.subareaMaterials Science (all)-
dc.subject.subareaCondensed Matter Physics-
dc.subject.subareaMechanical Engineering-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Total Views & Downloads

File Download

  • There are no files associated with this item.