The crystallite size effects of Pt nanoparticles on the CeO2 (Pt/CeO2) prepared with four different Pt precursors were investigated in terms of their thermal stability and catalytic activity for a water-gas shift (WGS) reaction using the compositions of reformates after a typical steam reforming of propane. The Pt/CeO2 prepared with a diamine dinitroplatinum (Pt(NO2)2(NH3)3) precursor, which forms the cationic Pt(NH3)22+ species on the negatively-charged CeO2 surfaces, revealed a superior catalytic activity and thermal stability by forming the partially oxidized smaller Pt nanoparticles decorated with metallic Pt surfaces as well as by forming the strongly interacted PtOx-CeO2 interfaces. The stable preservation of the pristine smaller Pt nanoparticles with small aggregations even under the hysteresis test from 250 to 400 °C was mainly attributed to the strong metal-support interactions. The optimized Pt/CeO2 was further studied to obtain kinetic equations derived by Langmuir-Hinshelwood (LH) model, and the optimal operating conditions of WGS reaction were found to be ~280 °C and H2O/CO molar ratio of 9 with the activation energy of ~78.4 kJ/mol.
The authors would like to acknowledge the financial support from the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (Project#: NRF-2018M3D3A1A01018009 and NRF-2020R1A2C2006052 ).