Freestanding epitaxial metal nanoplates can be utilized as advanced three-dimensional platforms for various novel applications. Here we report the vapor-phase epitaxial growth of freestanding Pd, AuPd, and Au nanoplates on an a-cut sapphire substrate as well as the comprehensive study of their growth mechanisms and geometry tailoring. All as-grown Pd, AuPd, and Au nanoplates possess twin-free single crystallinity as well as are aligned three-dimensionally on the substrate with the same orientation. Interestingly, depending on their composition, they have the following three distinct geometries: trapezoid (Pd), hexagon (AuPd), or rhombus (Au). By analyzing the correlation of the geometry and orientation of the as-synthesized nanostructures, we reveal that all the nanoplates grow from square pyramidal seed crystals. The interfacial lattice mismatch between the bottom plane of the square pyramidal seeds and a-cut sapphire substrate increases in the following order: Pd < AuPd < Au. Consequently, the length of the interface between the bottom of the nanoplate and the substrate decreases in the following order: Pd > AuPd > Au; this leads to the resulting geometries of the synthesized nanoplates. Such a fundamental understanding of the growth mechanism would aid the growth of epitaxial metal nanostructures with the desired geometry, which is very attractive for building macroscale functional nanoarchitectures.
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1C1C1008070 and 2018R1C1B5044670). This work was supported by the new faculty research fund of Ajou University.