Citation Export
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nguyen, Ba Phi | - |
dc.contributor.author | Phung, Duy Khuong | - |
dc.contributor.author | Kim, Kihong | - |
dc.date.issued | 2020-01-07 | - |
dc.identifier.uri | https://dspace.ajou.ac.kr/dev/handle/2018.oak/31208 | - |
dc.description.abstract | We study numerically the localization properties of eigenstates in a one-dimensional random lattice described by a non-Hermitian disordered Hamiltonian, where both the disorder and the non-Hermiticity are inserted simultaneously in the on-site potential. We calculate the averaged participation number, the Shannon entropy and the structural entropy as a function of other parameters. We show that, in the presence of an imaginary random potential, all eigenstates are localized in the thermodynamic limit and strong anomalous Anderson localization occurs at the band center. In contrast to the usual localization anomalies where a weaker localization is observed, the localization of the eigenstates near the band center is strongly enhanced in the present non-Hermitian model. This phenomenon is associated with the occurrence of a large number of strongly-localized states with pure imaginary energy eigenvalues. | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Physics Publishing | - |
dc.title | Anomalous localization enhancement in one-dimensional non-Hermitian disordered lattices | - |
dc.type | Article | - |
dc.citation.title | Journal of Physics A: Mathematical and Theoretical | - |
dc.citation.volume | 53 | - |
dc.identifier.bibliographicCitation | Journal of Physics A: Mathematical and Theoretical, Vol.53 | - |
dc.identifier.doi | 10.1088/1751-8121/ab5eb8 | - |
dc.identifier.scopusid | 2-s2.0-85081677646 | - |
dc.identifier.url | https://iopscience.iop.org/article/10.1088/1751-8121/ab5eb8/pdf | - |
dc.subject.keyword | Anderson localization | - |
dc.subject.keyword | band-center anomaly | - |
dc.subject.keyword | complex systems | - |
dc.subject.keyword | disordered systems | - |
dc.subject.keyword | imaginary random potential | - |
dc.subject.keyword | non-Hermitian Hamiltonian | - |
dc.description.isoa | true | - |
dc.subject.subarea | Statistical and Nonlinear Physics | - |
dc.subject.subarea | Statistics and Probability | - |
dc.subject.subarea | Modeling and Simulation | - |
dc.subject.subarea | Mathematical Physics | - |
dc.subject.subarea | Physics and Astronomy (all) | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.