Ajou University repository

Self-semi-supervised clustering for large scale data with massive null group
  • Ahn, Soohyun ;
  • Choi, Hyungwon ;
  • Lim, Johan ;
  • Lee, Kyeong Eun
Citations

SCOPUS

2

Citation Export

DC Field Value Language
dc.contributor.authorAhn, Soohyun-
dc.contributor.authorChoi, Hyungwon-
dc.contributor.authorLim, Johan-
dc.contributor.authorLee, Kyeong Eun-
dc.date.issued2020-03-01-
dc.identifier.issn1226-3192-
dc.identifier.urihttps://dspace.ajou.ac.kr/dev/handle/2018.oak/31161-
dc.description.abstractIn this paper, we propose self-semi-supervised clustering, a new clustering method for large scale data with a massive null group. Self-semi-supervised clustering is a two-stage procedure: preselect a part of “null” group from the data in the first stage and apply semi-supervised clustering to the rest of the data in the second stage, allowing them to be assigned to the null group. We evaluate the performance of the proposed method using a simulation study and demonstrate the method in the analysis of time course gene expression data from a longitudinal study of Influenza A virus infection.-
dc.description.sponsorshipThis work was supported by the new faculty research fund of Ajou University and National Research Foundation of Korea (Grant nos: 2012R1A1A3013075, 2017R1A2B2012264).-
dc.language.isoeng-
dc.publisherSpringer-
dc.titleSelf-semi-supervised clustering for large scale data with massive null group-
dc.typeArticle-
dc.citation.endPage176-
dc.citation.startPage161-
dc.citation.titleJournal of the Korean Statistical Society-
dc.citation.volume49-
dc.identifier.bibliographicCitationJournal of the Korean Statistical Society, Vol.49, pp.161-176-
dc.identifier.doi10.1007/s42952-019-00005-z-
dc.identifier.scopusid2-s2.0-85079762122-
dc.identifier.urlhttps://link.springer.com/journal/42952-
dc.subject.keywordInfluenza A virus-
dc.subject.keywordMassive null group-
dc.subject.keywordModel-based clustering-
dc.subject.keywordPre-selection-
dc.subject.keywordSemi-supervised clustering-
dc.subject.keywordTime-course microarray data-
dc.description.isoafalse-
dc.subject.subareaStatistics and Probability-
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Ahn, Soohyun Image
Ahn, Soohyun안수현
Department of Mathematics
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.