Let G be a graph on the vertex set V. A vertex subset W ⊆ V is a cover of G if V \W is an independent set of G, and W is a non-cover of G if W is not a cover of G. The non-cover complex of G is a simplicial complex on V whose faces are non-covers of G. Then the non-cover complex of G is the combinatorial Alexander dual of the independence complex of G. Aharoni asked if the non-cover complex of a graph G without isolated vertices is (|V (G)| −iγ(G) −1)-collapsible where iγ(G) denotes the independence domination number of G. Extending a result by the second author, who verified Aharoni’s question in the affirmative for chordal graphs, we prove that the answer to the question is yes for all graphs.
∗Ilkyoo Choi was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07043049), and also by the Hankuk University of Foreign Studies Research Fund.‡Boram Park work supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2018R1C1B6003577).