Microstructure, Wetting, and Tensile Behaviors of Sn-Ag Alloy Reinforced with Copper-Coated Carbon Nanofibers Produced by the Melting and Casting Route
A Cu-coated C nanofiber (Cu-CNF) composite is added to a Sn-3.5Ag alloy to fabricate a solder nanocomposite using mechanical stirring and a melting technique. The microstructural features of the samples, i.e., the β-Sn grain size and the distribution and thickness of the Ag3Sn intermetallic compound (IMC), are statistically measured. The wettability of the developed solders is tested on a Cu substrate by contact-angle and spreading-factor measurements. The experimental results indicate that the presence of up to 0.05 wt pct Cu-CNFs in the solder matrix reduces the β-Sn secondary dendritic arm spacing significantly. Additionally, the spread ratio and spread factor are improved to 93 and 96 pct, respectively, owing to the adsorption of surface-active CNFs in the solder matrix. Furthermore, the addition of 0.05 wt pct Cu-CNFs to the Sn-Ag (SA) alloy increases the microhardness, tensile strength, elongation percentage (El pct), and toughness by 40, 35, 11, and 33 pct, respectively.
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2018R1D1A1B07044481 (BA) and Grant No. NRF-2018R1D1A1B07044706 (AS)).