In this study, unique core-shell aluminate spinel supports, Al@MAl2O4 (M = Zn, Mg, or Mn), were obtained by simple hydrothermal surface oxidation and were applied to the preparation of supported Ni catalysts for CO2 methanation. For comparison, CO methanation was also evaluated using the same catalysts. The prepared catalysts were characterized with a variety of techniques, including N2 physisorption, CO2 chemisorption, H2 chemisorption, temperature-programmed reduction with H2, temperature-programmed desorption of CO2, X-ray diffraction, high-resolution transmission electron microscopy, and in-situ diffuse reflectance infrared Fourier transform spectroscopy. The combination of supports with core-shell spinel structures and Ni doping with a deposition–precipitation method created outstanding catalytic performance of the Ni catalysts supported on Al@MgAl2O4 and Al@MnAl2O4 due to improved dispersion of Ni nanoparticles and creation of moderate basic sites with suitable strength. Good stability of Ni/Al@MnAl2O4 catalyst was also confirmed in the study.
Funding: This work was supported by the Human Resources Program in Energy Technology (No. 20154010200820) of the Korea Institute of Energy Technology Evaluation and Planning, which is granted financial resources by the Ministry of Trade, Industry and Energy of the Republic of Korea. This work was also supported by the Basic Science Research Program, through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2017R1A2B3011316).