Wearable/attachable electronics are essential for the seamless human-machine interface. However, it is still challenging to obtain an efficient and lighter power source. Here, we utilize a nanostructured silk protein and silver nanowires (AgNWs) buried in the silk nanostructure to yield an efficient, flexible, transparent, and skin/textile-compatible triboelectric nanogenerator (TENG) and strain sensor for biomechanical energy harvesting and motion sensing. As a strain sensor, the device shows very high gauge factor (~30), and stably detects the bending and unbending of knuckles. With the large surface area of the nanostructured silk/AgNW surface, finger-contact can actuate the silk bio-TENG and generate the considerably high power density of 2 mW/cm2, which is sufficient to power light-emitting diodes. The optical transparency of the bio-TENG makes it possible to use the device as a touch sensor on electronic devices. The strain sensor and the bio-TENG are integrated into a single silk chip and attached to skin and fabrics to monitor the strain and harvest the biomechanical energy at the same time. Advantages of the protein-based energy skin including low cost, ease of fabrication, biocompatibility, flexibility, and transparency, empower its usage for a seamless human-machine interface, touch sensor, and wearable bioelectronics.
The authors acknowledge support from the National Research Foundation (NRF) of Korea (no. 2017R1A2B4010807), the GRRC program of Gyeonggi province (GRRC-AJOU-2016-B01, Photonics-Medical Convergence Technology Research Center), and the Korea Institute of Energy Technology Evaluation and Planning (no. 20164030201380, Human Resources Program in Energy Technology).The authors acknowledge support from the National Research Foundation (NRF) of Korea (no. 2017R1A2B4010807 ), the GRRC program of Gyeonggi province ( GRRC-AJOU-2016-B01 , Photonics-Medical Convergence Technology Research Center ), and the Korea Institute of Energy Technology Evaluation and Planning (no. 20164030201380 , Human Resources Program in Energy Technology ).