Ajou University repository

Control of the electrical resistivity of Ni-Cr wires using low pressure chemical vapor deposition of tin
Citations

SCOPUS

0

Citation Export

Publication Year
2018-01-31
Publisher
Elsevier B.V.
Citation
Applied Surface Science, Vol.429, pp.134-137
Keyword
Electrical resistivityFusible resistorsLPCVDNi-Cr wiresTin
Mesh Keyword
Compositional analysisCompositional characteristicsDeposition temperaturesLPCVDTemperature rangeTin content
All Science Classification Codes (ASJC)
Chemistry (all)Condensed Matter PhysicsPhysics and Astronomy (all)Surfaces and InterfacesSurfaces, Coatings and Films
Abstract
Control of the electrical resistivity of Ni-Cr wires is demonstrated using low pressure chemical vapor deposition (LPCVD) of tin on the surface of the wire, after which the effects of the deposition temperature on the structural, morphological, and compositional characteristics of the tin-deposited Ni-Cr wires are investigated. As the deposition temperature is increased, the resistivity of the Ni-Cr wires increases in the temperature range 300–400 °C; then remains nearly constant as the temperature increased to 700 °C. The increase in the resistivity of the Ni-Cr wires is attributed to formation of Ni 3 Sn 2 particulates on the surface of the wire. Compositional analysis shows that the pattern of change in the tin content with the deposition temperature is similar to that of resistivity with temperature, implying that the atomic content of tin on Ni-Cr directly affects the electrical resistivity.
ISSN
0169-4332
Language
eng
URI
https://dspace.ajou.ac.kr/dev/handle/2018.oak/30001
DOI
https://doi.org/10.1016/j.apsusc.2017.08.225
Fulltext

Type
Article
Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Grant Nos. 2015R1A2A2A01002305 and 2014R1A2A1A11051436 ), and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Trade , Industry and Energy (Grant No. 20172010104830 ).This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Grant Nos. 2015R1A2A2A01002305 and 2014R1A2A1A11051436), and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Trade, Industry and Energy (Grant No. 20172010104830).
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Kim, Chang-Koo Image
Kim, Chang-Koo김창구
Department of Chemical Engineering
Read More

Total Views & Downloads

File Download

  • There are no files associated with this item.