Ajou University repository

A deep learning-based demosaicking and denoising method with wavelet channel attention
  • 김민철
Citations

SCOPUS

0

Citation Export

Advisor
선우명훈
Affiliation
아주대학교 일반대학원
Department
일반대학원 전자공학과
Publication Year
2022-02
Publisher
The Graduate School, Ajou University
Keyword
Deep learningDemosaickingDenoisingImage restorationimage reconstruction
Description
학위논문(석사)--아주대학교 일반대학원 :전자공학과,2022. 2
Alternative Abstract
Demosaicking and denoising are very important tasks among various processing steps of Image signal processor (ISP) because they are essential and process raw data obtained from sensors. Convolutional Neural Network (CNN) based Joint Demosaicking and denoising methods simultaneously process Demosaicking, and denoising using a single network are also proposed. Although existing CNN based methods showed excellent performance, the high-frequency details of the image were still not well restored, and a network structure for learning focused on that part was not be proposed. To solve this problem, we proposed a network structure that learns features from multi-resolution feature maps after downsampling without data loss by applying Discrete Wavelet Transform (DWT) to CNN. Moreover, this paper proposed a network structure that pays attention to the high frequency of an image using the channel attention technique and a loss function that reduces the loss in the frequency domain. The proposed methods are high-efficiency methods that show high-performance improvement compared to required parameters or memory. In addition, the performance of the proposed method achieved the highest PSRN and SSIM compared with existing methods and showed a result of well reconstructing high-frequency details such as edges when comparing reconstructed images.
Language
kor
URI
https://dspace.ajou.ac.kr/handle/2018.oak/20881
Fulltext

Type
Thesis
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Total Views & Downloads

File Download

  • There are no files associated with this item.