Ajou University repository

Phosphoric Acid Catalyzed Polycondensation of Diol and Dicarboxylic Acid
  • 이홍철
Citations

SCOPUS

0

Citation Export

Advisor
이분열
Affiliation
아주대학교 일반대학원
Department
일반대학원 분자과학기술학과
Publication Year
2022-02
Publisher
The Graduate School, Ajou University
Keyword
Biodegradable polyesterIonomerphosphoric acidpoly(butylene succinate)polycondensation
Description
학위논문(석사)--아주대학교 일반대학원 :분자과학기술학과,2022. 2
Alternative Abstract
Synthetic biodegradable polyesters such as PBAT suffer from slow biodegradability in ambient conditions. Facing the concern of slow biodegradability, We synthesized polyester in a different route from the conventional synthesis method. Conventional methods made of metal catalysts and chain extenders have increased molecular weight to supplement physical properties. However, there is a trade-off between the molecular weight and biodegradability; increasing molecular weight with urethane linkages deteriorates biodegradability. we envisage a different route: phosphoric acid catalyzed diacid/diol polycondensation to generate polyester chains with phosphate pendant groups (e.g., -O(O)P(OH)2), which were subsequently treated with divalent metal carboxylate (RCO2)2M (M = Zn, Mg, Ca) (Scheme 1b). Phosphate as well as Ca, Mg, Zn ions are essential nutrients in plant growth, the resulting polymers can be a slow-releasing fertilizer during composting. Here, we prepared PBS and derivatives for PBAT prior research. Results were obtained by analyzing tensile property and rheological property. Combing the concepts of macromolecules and aggregates, it was possible to produce polyester having superior mechanical strength and viscosity than conventional polyester. It will also have a positive effect in terms of biodegradability.
Language
eng
URI
https://dspace.ajou.ac.kr/handle/2018.oak/20801
Fulltext

Type
Thesis
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Total Views & Downloads

File Download

  • There are no files associated with this item.