Ajou University repository

빅데이터를 이용한 한반도 인근 지역의 미세먼지 시공간 농도변화연구
  • 이찬주
Citations

SCOPUS

0

Citation Export

Advisor
홍민선
Affiliation
아주대학교 일반대학원
Department
일반대학원 환경안전공학과
Publication Year
2020-02
Publisher
The Graduate School, Ajou University
Keyword
2차미세먼지머신러닝미세먼지시공간농도변화
Description
학위논문(석사)--아주대학교 일반대학원 :환경안전공학과,2020. 2
Abstract
본 연구에서는 한반도와 한반도 인근의 공개된 PM10, PM2.5의 2015~2018년 데이터를 사용하여 미세먼지에 대한 시공간 분석을 하였다. 시공간 분석은 38도 선을 횡단하는 6개 지역과 서해안 지역과 동해안 지역 각 6개 지역을 선정하였으며 연간, 월간, 시간별 미세먼지 변화를 분석하였다. 분석에는 프로그래밍 언어인 Python을 사용하였으며 사용한 패키지는 Numpy, Pandas, Seaborn, Scikit-learn 패키지이다. 농도분석 결과 대상지역 모두 국내 PM2.5 기준인 15 ㎍/m3을 초과하여 PM2.5 저감이 필요한 것으로 판단된다. 서해안 지역의 PM10, PM2.5의 시간에 따른 변화는 동해안 지역의 변화와 차이를 보여 배출원뿐만 아니라 다양한 변수의 영향을 받는 것으로 판단된다. 머신러닝을 이용한 PM2.5 예측분석 결과 랜덤 포레스트(Random Forest) 모델이 가장 높은 정확도를 보인 것으로 나타났다.
Language
kor
URI
https://dspace.ajou.ac.kr/handle/2018.oak/19602
Fulltext

Type
Thesis
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Total Views & Downloads

File Download

  • There are no files associated with this item.