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Abstract—In modern on-driving computing environments,
many sensors are used for context-aware applications. This
paper utilizes two deep learning models, U-Net and EfficientNet,
which consist of a convolutional neural network (CNN), to detect
hand gestures and remove noise in the Range Doppler Map
image that was measured through a millimeter-wave (mmWave)
radar. To improve the performance of classification, accurate
pre-processing algorithms are essential. Therefore, a novel pre-
processing approach to denoise images before entering the first
deep learning model stage increases the accuracy of classification.
Thus, this paper proposes a deep neural network based high-
performance nonlinear pre-processing method.

Index Terms—mmWave Radar, human gesture recognition,
autonomous driving, deep learning

I. INTRODUCTION

Endless research is conducted by countless institutes to
bring self-driving vehicles to the mainstream market [1], [2].
Simulations to evaluate the performance of this improved
denoising algorithm are implement on human gesture datasets.
It is emphasized that this particular algorithm can be directly
transferred to the on-driving setting where denoised-signals
from the drivers is pivotal to detect for safety measures [3].

Among various approaches in human gesture recognition,
this paper considers millimeter-wave (mmWave) radar based
signal detection and estimation [4]–[15], as shown in Fig. 1.
The reasons why mmWave radar-based approach is considered
are because it works well even in dark situations where visual
sensing modules cannot work properly [16]–[18].

mmWave radar is a type of radar system that transmits
electromagnetic wave signals in the millimeter range that
provides information on range, velocity and angle of the
detected object. mmWave radars are probable sensors with
its broad portfolio that allow for minor movements from
the reflected surface to be detected. The radar used in this
experiment has a lower bound of 57.5GHz and an upper bound
of 63.5GHz, giving it a 6GHz signal bandwidth for an even
precise detection of movement [19], [20]. mmWave radars
can be used alongside convolutional neural network (CNN)
to detect human motions in various settings [21], [22]. Along
with its precise accuracy, mmWave radars are low-cost, low
in energy consumption and compact, making it an ever more
promising sensor in autonomous vehicles and highlights the
necessity in enhancing its performance.

Fig. 1. Four way hand gesture recognition data set configuration method using
mmWave radar. (From the left, Gesture 1: left, Gesture 2: right, Gesture 3:
away from radar, Gesture 4: towards radar).

An original approach to denoise hand gesture motion by
synthesising noise images with ground truth images is ex-
plained in this paper. This pre-processed image is fed as the
input to the combined deep learning U-Net and EfficientNet
models. By using these deep neural architectures, the benefit
of nonlinear pre-processing can be realized. Through this
unique pre-processing method, a higher accuracy in classifying
human gestures can be achieved. Possessing a sound pre-
processing image obtained from mmWave radars is essential
when applying this sensor in diverse scenarios.

II. NEURAL ARCHITECTURAL NONLINEAR
PRE-PROCESSING FOR HUMAN GESTURE RECOGNITION

A. Observation

To perform the object recognition process, the data obtained
from the mmWave radar is configured as a Range Doppler
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(a) Antenna A. (b) Antenna B.

Fig. 2. From the left of the Range Doppler Map, antenna A and antenna B
show completely different signals even from the same hand motion.

(a) Threshold: -70 dB. (b) Threshold: -85 dB.

Fig. 3. Range Doppler Map of the same hand motion signal measured through
different thresholds.

Map. When recognizing motion using mmWave radar, there
are a couple of major considerations:

• Even with the same signal, the measured noise intensity
varies depending on the manufactured sensor and its three
antennas.

• The measurement threshold needs to be adjusted depend-
ing on the environment and purpose.

As portrayed in Fig. 2, it can be observed that even with the
same gesture, same signal, the same environment and setting,
the noise intensity and its distribution varies profusely depend-
ing on received antenna. To counterbalance this phenomenon,
deep learning image processing technique, which is robust to
variations in noise according to environment and manufactured
devices, is adapted.

In addition, as shown in Fig. 3, if the threshold value is in-
creased to minimize noise, the original signal may be defected,
and all possibilities to decipher the signal may be unavailable.
To improve these flaws, an image processing technique using
deep learning is adopted to reduce the discrepancies between
the antennas of the same device. Hence, by utilizing this pre-
processing algorithm, mmWave radar sensors can secure a
place in a wide variety of applications where recognition of
motion is key.

However, there is one problem that arises when implement-
ing the model introduced in Fig. 3. It is impossible to remove

Fig. 4. Synthetic Noise Generation Method. Random Noise generated in two
thresholds −95 dB and −100 dB is augmented with pure hand motion image
to produce Synthetic Noisy Image.

noise from the Range Doppler Map image and extract an
image to be set as the ground truth simultaneously when using
only one antenna. On the other hand, as seen in Fig. 2, if
more than two antennas are used, discrepancies occur between
the Range Doppler Map images even with the same motion
applied. Hence, it is impossible to interpret the images and
process them further to remove noise from the image.

B. Proposed Algorithm

Based on the observation, this paper proposes a novel
method to overcome this enigma. The synthetic noise genera-
tion technique creates an artificial noise image by combining a
ground truth image, which is obtained by sensing hand motion
at a −90 dB threshold, and the noise image measured in the
absence of motion as shown in Fig. 4, and then training it
in the noise removal model. To prevent the operation from
learning only a specific threshold noise, one random sample
from a mixture batch of approximately 10, 000 noise images
measured at two different thresholds, −95 dB and −100 dB
values, is combined with the ground truth Range Doppler Map
image to create a Synthetic Noisy Image.

The structure of the model proposed in this paper is demon-
strated in Fig. 5. To emulate the real-life situation of various
environments, data containing noise generated when an object
is recognized through the mmWave radar is transferred as the
input to the pre-trained U-Net. After that, the output from the
U-Net model, which would be the denoised Doppler Range
image, is fed into the EfficientNet [23] to recognize the specific
motion of the hand gesture. When the above model is applied
to the dataset from the radar, the image with a substantial
number of noises is inputted into the U-Net model. This model
outputs a denoised image, which then enters the classification
model, thereby ensuring the accuracy of motion recognition
and eliminating any possible signal damaging due to excessive
threshold setting. The proposed model successfully classifies
the motion out of the four hand gestures: left, right, moving
towards and away from the radar.

This model has the characteristic of improving the perfor-
mance according to its purpose by properly setting the depth,
width, and resolution [23]. In this study, EfficientNet-B0, the
simplest structure among several EfficientNets, is used.
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Fig. 5. End-to-end neural architectural system model for human gesture recognition.

(a)Before. (b) After.

Fig. 6. Evaluation for noise rejection.

III. EXPERIMENT

The proposed algorithm in this paper is implemented with
Infineon’s BGT60TR13C 60 GHz mmWave frequency modu-
lated continuous wave (FMCW) radar. Furthermore, real-world
datasets are gathered, generated, and used for the performance
evaluation.

In order to confirm the effectiveness of the motion recogni-
tion algorithm mentioned in Fig. 5, the experiment is com-
posed as follows. As mentioned, Infineon’s BGT60TR13C
module is used to implement a mmWave radar motion recog-
nition algorithm that identifies objects after removing noise
from the surrounding environments. By setting the threshold
values of the mmWave radar to −95 dB and −100 dB, N noise
images are extracted for each threshold value.

As shown in Fig. 1, each dataset is created by using the
mmWave radar to classify hand movements in four different
directions. Subsequently, a Synthetic Noise image is created
by combining the Range Doppler Map of the four-direction
hand motion signals and the noise image randomly extracted
using the Synthetic Noise Generation method.

The Synthetic Noisy Image generated from the Synthetic
Noise Generation is fed into the U-Net. Thereafter, the de-
noised image outputted from the U-Net is used as the input to
the EfficientNet, which then classifies that hand gestures out
of the four motions.

Our noise rejection performance is visually presented in
Fig. 6. As can be seen in Fig. 6, deep learning based approach
can remove certain amounts of noises. Furthermore, the exist-

Fig. 7. Performance evaluation result.

ing noises in Fig. 6 are real noises from mmWave FMCW
radar (not synthetic noises). Therefore, we can obviously
confirm that our proposed neural architectural nonlinear pre-
processing algorithm works well in real-world noise situations.

Our performance evaluation result in terms of perception
accuracy can be obtained as in Fig. 7. As shown in Fig. 7,
we can verify that our proposed neural architectural nonlinear
pre-processing converges to the accuracy of (approximately
more than) 90%.

IV. CONCLUSIONS

This paper introduced a novel denoising algorithm that
allows the mmWave radar to be employed in a diverse environ-
ment. The process of concatenating a noise data with a ground
truth image to create a Synthetic Noisy Image is the highlight
of this paper. This auxiliary step of using a pre-processed,
denoised image as the input to a CNN model, produces a
much higher accurate level of hand motion classification than
compared to that of a conventional method where only raw
image with noise was the input to the CNN model. The
efficacy of the above object recognition method using deep
learning denoising algorithm is confirmed through its ability
to successfully classify the four distinct hand movements.
The proposed method is promising especially in environments
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where noise is abundant such as roads for autonomous vehi-
cles.
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