
Proceedings of the 28th International Conference on Computational Linguistics, pages 2115–2125
Barcelona, Spain (Online), December 8-13, 2020

2115

How Positive Are You: Text Style Transfer
using Adaptive Style Embedding

Heejin Kim1 and Kyung-Ah Sohn1,2∗

1Department of Artificial Intelligence
2Department of Software and Computer Engineering

Ajou University
{heeeee123, kasohn}@ajou.ac.kr

∗ Corresponding author

Abstract

The prevalent approach for unsupervised text style transfer is disentanglement between content
and style. However, it is difficult to completely separate style information from the content.
Other approaches allow the latent text representation to contain style and the target style to affect
the generated output more than the latent representation does. In both approaches, however, it
is impossible to adjust the strength of the style in the generated output. Moreover, those previ-
ous approaches typically perform both the sentence reconstruction and style control tasks in a
single model, which complicates the overall architecture. In this paper, we address these issues
by separating the model into a sentence reconstruction module and a style module. We use the
Transformer-based autoencoder model for sentence reconstruction and the adaptive style embed-
ding is learned directly in the style module. Because of this separation, each module can better
focus on its own task. Moreover, we can vary the style strength of the generated sentence by
changing the style of the embedding expression. Therefore, our approach not only controls the
strength of the style, but also simplifies the model architecture. Experimental results show that
our approach achieves better style transfer performance and content preservation than previous
approaches.1

1 Introduction

Text style transfer is the task of modifying a text with a specified style attribute. Given a source text
with an attribute (e.g., positive), the text style transfer problem aims to alter this input text to achieve a
different attribute (e.g., negative). The significant concern in this problem is that the generated text must
meet some requirements: the text must (i) reflect the given target attribute, (ii) maintain the content that
is style-irrelevant, and (iii) generate a sentence that appears natural.

Text style transfer has been solved by a supervised method using a parallel dataset (Jhamtani et al.,
2017) containing pairs of source and target sentences. However, obtaining this parallel dataset that
achieves a total one-to-one correspondence with a specified style is often not possible. Therefore, un-
supervised approaches have recently been actively researched. The first among these unsupervised ap-
proaches is disentanglement. To satisfy the first two style transfer requirements, namely, reflecting the
style attributes and preserving the contents, the disentanglement approach tries to perfectly separate the
style component from the content component within the input text. If the input is completely separated,
the text style is transferred by substituting the style component with a new target; for this approach, a
discriminator is used to separate the style from a latent representation z, a compressed representation of
the input text (Fu et al., 2018; John et al., 2019). The discriminator can also be applied to the output text
so that the output text reflects the given attribute (Shen et al., 2017; Hu et al., 2017; Zhao et al., 2018).
Nevertheless, this approach has weaknesses. First, dividing a sentence representation into style and con-
tent is difficult because these two components are not mutually exclusive. Furthermore, this separation
induces a loss of information.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1https://github.com/kinggodhj/How-Positive-Are-You-Text-Style-Transfer-using-Adaptive-Style-Embedding

2116

Another approach is to rewrite the style attribute of the input text. This approach does not perfectly
disentangle the style from the text representation; rather, it uses extra style information along with a text
representation. If style information is added to the generation model, the output sentence reflects the
inserted style attribute (Lample et al., 2019). Moreover, a style classifier, which determines the style
of the sentence, is applied to an output sentence to enhance the transfer performance (Dai et al., 2019).
However, these approaches assign two jobs to the generation model: the first is to reconstruct the input
sentence, and the second is to transfer the style. When the sentence generation model is also in charge of
style expression, the style expression cannot be properly learned.

Moreover, these previous approaches cannot address the style strength because the meaning of the style
is not learned. Therefore, ideally, we divide the architecture of the style transfer model into two modules,
namely, sentence reconstruction and style representation modules. This means that the reconstruction
model is no longer responsible for converting the style. As a result, the generation model can concentrate
on generating sentences, while the style model can focus on learning direct style expressions. Therefore,
the proposed model directly learns the representations of style expressions.

Figure 1 presents the main differences between previous models and the proposed model. Our model
consists of two modules, namely, the transformer-based autoencoder and the style embedding module.
In our architecture, style embedding is learned in the style embedding part, not in the autoencoder part;
hence, the autoencoder part can concentrate on restoring the input. Therefore, our model is more concise
than previous models and uses only one reconstruction loss to train the autoencoder model. To learn the
style representation, the similarities between the style embedding and the latent text representations are
used as input to the style classifier. Because the similarity is calculated through dot products with input
latent representation, the learned style embedding also follows the expression of the input representation
in the latent space. As a result, the style embedding that expresses the general representation of each
style is learned. This style embedding module does not affect the autoencoder module, and the style
embedding part can also concentrate on learning the style representation.

In addition, the separation of the model into a style part and a reconstruction part makes it possible to
control the strength of the style in the output text. The style embedding part learns the general represen-
tation of each style. With this style embedding, the degree of style modification can be adjusted. We can
also generate the output with an expression stronger than the input through the same style as the input.
Because our model can control how much of the style is changed, it is characterized by its multimodality

In summary, our main contributions are as follows. (i) We adjust the style strength of the output,
which was not previously possible; therefore, the output sentences can be multimodal. (ii) The autoen-
coder model for latent text representation is more concise and has fewer constraints than the models
in previous studies. Each model can concentrate on its task (sentence generation and style representa-
tion). Ultimately, our model achieves competitive performance for style accuracy and sentence retention
compared to other models.

2 Related Work

Label Embedding. Label embedding is used in many text-based problems. In machine translation, a to-
ken of the target language is used at the beginning of the input sentence to provide information regarding
the target language (Johnson et al., 2017). The generation model learns this token representation auto-
matically and provides a clue as to which language to translate at the test time. Using this information,
Johnson et al. (2017) built a single model to translate multiple languages. Label embedding can also be
used in text classification problems. Each word is represented by a word embedding vector, and the label
of the sentence (such as positive or negative) is trained based on the similarities with word vectors. Label
information is added as a weight to represent the word vectors, which are newly modified with this label
information (Wang et al., 2018). This modification of word vectors using label embedding improves the
text classification performance. In domain adaption, Li et al. (2019) used domain-specific style labels to
give information on certain domains; with these domain labels, they can transfer the style among mul-
tiple datasets. Additionally, in text style transfer, style label embedding is used to provide information
about transferring attributes for the generation model (Dai et al., 2019).

2117

Text style transfer. Like many other cross-domain problems, the main problem of style transfer is that
parallel data are limited. The first approach to handle this issue is disentanglement. This approach uses
a discriminator to extract style attributes from the text information. When the discriminator is applied to
the output text and the attribute is given, the discriminator makes the output involve the given attribute.
This means aligning the output text to the attribute domain (Shen et al., 2017; Hu et al., 2017; Zhao et
al., 2018). Alternatively, the discriminator is applied after the latent representation. At this location, the
discriminator removes the attribute information from the latent space. At the test time, the style attribute
is newly inserted into the decoder, and thus, the generated output text contains the given target style
attribute (Fu et al., 2018; John et al., 2019). Additionally, the discriminator is pretrained to detect style
words in the text, and these detected attribute words are eliminated from the sentence. At the inference
phase, the other domain’s style words are added into the non-style text (Li et al., 2018; Xu et al., 2018;
Sudhakar et al., 2019).

Unfortunately, fully separating the style and content is difficult and often requires the pretraining
phase. Therefore, another approach that does not employ disentanglement has been proposed. This
technique does not extract style information from latent representations but rather overwrites the trans-
ferred sentence using the style attribute corresponding to the user’s intent (Lample et al., 2019; Dai et
al., 2019). To reflect the style, this approach uses extra constraints, such as back-translation loss and
adversarial style loss (e.g., the disentanglement approach). The back-translation loss (Sennrich et al.,
2016) is similar to the cycle loss in the image domain (Zhu et al., 2017), which enhances the rewriting
performance through the preservation of content. For instance, the input sentences are in two domains
(X and Y), and each domain has a corresponding style s, s′. The input text x in the X domain is trans-
ferred to ŷ by D(E(x), s′)=ŷ where E and D represent an encoder and a decoder, respectively. The
style is modified once again with the transferred output ŷ by D(E(y), s)=x̂. The difference between
the original input x and the final output x̂ is minimized, which prevents the loss of content in the text.
However, considerable time is required for training because the transfer procedure must be performed
twice. Second, the style adversarial loss provides an indirect guide to the generation model to transfer
the input sentence. This guidance constrains the generation model to follow the style information in the
label embedding rather than the latent text representation. However, label embedding does not repre-
sent style expressions directly. Therefore, models with this architecture are limited to generating output
sentences with only a single modality. Even if the same sentence is converted multiple times, the exact
same result is obtained each time without any variation. Additionally, similar to the disentanglement
approach, this adversarial loss hinders the generation model from focusing only on the sentence recon-
struction. Thus, we propose a method that does not require a discriminator or model constraints, such as
the back-translation loss, pretrained classifiers or pretrained autoencoders, but instead employs rewriting
with style label embedding.

3 Method

The architecture of our proposed model is presented in Figure 2. The model is divided into two parts:
the autoencoder model for the content, and the style embedding model. In the autoencoder model, the
latent representation from the encoder and the style representation are combined, and the decoder uses
the resulting expression to generate the output text. During training, the autoencoder model’s objective
is to reconstruct the input text using the combined latent representation. The style embedding model is
responsible for controlling the style of the input text. The style embedding model learns the representa-
tion for each style, and the classifier predicts the style using this embedding information. The objective
of this part is to learn the style expression classifying the style label. The separation of these two parts
simplifies the generation model and makes it possible to use adaptive style expressions. Additionally,
each model can concentrate solely on its task.

3.1 Model architecture

Transformer based Autoencoder Most text generation tasks are based on a sequence-to-sequence
model, which consists of an encoder and a decoder (Johnson et al., 2017; Lample et al., 2018). We

2118

Figure 1: Comparison between models at the training phase. (a) Most style overwriting-based models
are trained by the combination of three losses: reconstruction, cycle, and adversarial losses. As a result,
many tasks are assigned to a single generation model. Additionally, the task is to make the output y
follow the given target style s′, not to learn the style expression. Therefore, most overwriting models
cannot control how much style is changed in the text. (b) Our model is trained by the reconstruction
loss only, and this simplicity can make the model focus more on generating sentences. Learning style
expressions and adding them to the latent text representation makes it possible to control the output
attribute.

use the Transformer-based sequence-to-sequence model to capture the various meanings of the same
word. That is, the same word can have slightly different meanings in sentimental text; to capture these
subtle differences, relation information is used in Transformer (Vaswani et al., 2017). In our approach,
the transformer-based autoencoder model is trained to reconstruct the input text x with its own style s.
Pairs of x, s′ and x′, s are not used in training phase. The generation model does not need to make the
output follow a given attribute like other methods (Shen et al., 2017; Hu et al., 2017; Dai et al., 2019).
Therefore, we do not need to add constraints such as the adversarial loss or cycle loss. Instead, the gen-
eration model focuses only on the reconstruction when the combined latent representation is given. To
train this plain autoencoder, we use label smoothing regularization to improve the performance (Szegedy
et al., 2016). The loss of the autoencoder model is expressed as follows:

Lrec(Dθd(Eθe(x), x) = −(1− ε)
v∑
i=1

p̄i log(pi) + ε/v
v∑
i=1

log(pi), (1)

where v is the vocabulary size and ε represents the smoothing parameter. p and p̄ denote the predicted
probability distribution and the true probability distribution over the vocabulary, respectively. This re-
construction loss does not affect the style embedding part and affects only the transformer model.

Learning the style embedding. We propose a style embedding module to learn the general style
representation. When the text is represented as a compressed dimension z ∈ Rd, the style information
and content information are hard to separate. Therefore, we do not disentangle the latent representation
z into style and content. Instead, we train the common representation depending on the style, and this
common expression becomes style embedding. The set of style embeddings is S={S1, · · · , Sk} ∈ Rd×k,
where k is the number of styles. The style embedding module uses a style classifier. The classifier

2119

Figure 2: The architecture of the two modules within our proposed model. The input sentence is repre-
sented as x, and s is the style label of the input. z∗ denotes the combined latent representation, and ‘sim’
means similarity. In the image, the flow of the gradient is marked with red arrows. (a) The sentence
generation model. The encoder has a sentence input x and generates a compressed expression z. The
style embedding from the input text style s is added to this representation. Using this added latent rep-
resentation, the decoder generates the reconstructed input. (b) The style embedding is obtained by the
similarity between the input style and the latent representation of the input. The similarity is calculated
by the dot product. Based on this similarity, the classifier predicts the style, and the ground truth is the
input style label.

consists of a linear projection layer that calculates the probabilities W ∈ Rk×1 corresponding to each
style. The input of the style classifier is the similarity between the latent representation z and style
embeddings S. The similarities are calculated by the dot product, simz,S = {simz,S1 , · · · , simz,Sk

}.
Based on the calculated similarities, the style classifier predicts the style label. Hence, the objective
of the training is to make similarity constituting the ground truth of the latent representation achieves
the highest value among all the calculated similarities. By making the similarity of the input style the
highest value, the corresponding style embedding obtains a more proper representation of the given input
style. For instance, if there are only two styles, such as positive and negative, the two styles are labeled 0
and 1; then, the style classifier contains the sigmoid function. This makes the negative style embedding a
negative value representation. Similarly, the positive style embedding obtains a positive value expression.
The classifier and the style embedding are trained by the classification loss Lse as follows:

Lse(Cθc(simz,Si , si)) = −
k∑
i=1

si log(si). (2)

where Cθc indicates the style classifier in the style embedding model, si means the input text’s style
label and simz,si represents the similarity between input’s latent representation and the style label. The
back-propagation procedure with respect to the classification loss does not affect the autoencoder model
and latent space z, only the style embedding result.

Combining the latent space and style embedding. We finally modify the latent representation from the
encoder by adding the learned style embedding. The modified latent representation, which includes in-
formation of the original text and style, becomes the input of decoder D. The added latent representation
is expressed as follows:

z∗x = zx + w·si. (3)

The hyperparameter w reflecting the style strength modulates how much of the style will be changed
in the sentence. In addition to the encoder output, the style embedding can be used to adjust the style
part in the sentence. During training, the value of the strength is only 1, making the input representation
slightly more inclusive of its own style. At this time, only the style of the input sentence is used, not
other styles. With this added latent space z∗x, the decoder reconstructs the input x as follows:

Dθ(z
∗
x) = x̂. (4)

2120

Figure 3: Visualization of representations with different style weights w. The direct output of the en-
coder is represented as source, and the one after adding the style embedding with the style strength w is
indicated as a transferred sample. PCA is used to project the vectors into two-dimensional space. In the
image of the source data, the left side of the projected space represents a positive style, while the right
side implies a negative style according to the source image. As the weight increases, we can observe that
the original negative samples move toward the positive position.

This approach slightly adds style information but does not significantly affect the reconstruction. In
fact, the input sentence is reconstructed by the decoder if additional style information is not used. As is
evident, the reconstruction model and the style model focus only on their tasks. Owing to this architec-
ture, the style expression used inside the generation model can be adapted without any other constraints.
At the test time, by adjusting the value of w, we can generate different output style strengths as desired.
The larger the value of w is, the more the text style changes.

4 Experiments

4.1 Implementation
In our transformer-based sequence-to-sequence model, the latent size and dimension of self-attention are
both 256. Additionally, the word embedding size and style embedding size are both 256. The size of
the feedforward network (FFN) in the transformer is set to 1024. Each encoder is repeated two layers
of the transformer, and the decoder’s setting is the same. The smoothing parameter ε is 0.1. The style
classifier consists of a linear layer, and the size of W is 2×1 because the number of styles is 2 (negative
and positive). We use the Adam (Kingma and Ba, 2015) optimizer with an initial learning rate of 0.001.
In the inference phase, we use the hyperparameter w, the values of which depend on the dataset. For the
Yelp dataset, the set is W = {8.0, 9.0, 10.0}; for the Amazon dataset, the set is W = {9.0, 10.0, 11.0}

4.2 Datasets
Yelp. This dataset consists of restaurant reviews from the Yelp dataset; we use the dataset from Li et al.
(2018). Each review is rated on a scale of 5 stars. A 2-star or 1-star review is considered a negative style,
whereas a 4-star or 5-star review is considered a positive style. The total number of training samples is
443,259; the number of positive data is 266,041, and the number of negative data is 177,218. There are
2000 validation samples and 500 test samples for each style.

Amazon. The Amazon dataset comprises Amazon product reviews. We use the dataset from He and
McAuley (2016). These data consist of two styles: negative and positive. The style labeling policy is
the same as in the Yelp dataset. The number of training samples is 554,997; the number of positive
samples is 273,150, and the number of negative sample is 272,919. Additionally, this dataset contains
1,015 samples for negative validation data and 985 for positive validation data. The number of test data
samples is 500 for each style.

4.3 Evaluation protocol
We compare the performance of our model with the models of prior works based on the following three
criteria. There is a trade-off between transferring style and preserving content. Moreover, the higher the

2121

Table 1: Evaluation results on the Yelp test dataset and the Amazon dataset. The bilingual evaluation
understudy (BLEU) score is computed by reference data that have been manually written by humans.
Our model shows different results corresponding to the style strength w. The settings of our models are
as follows: (1) the style strength is 10 for Yelp and 11 for Amazon; (2) the style strength is 9 for Yelp
and 10 for Amazon; (3) the style strength is 9 for Yelp and 8 for Amazon.

Model Yelp Amazon
Accuracy BLEU PPL Accuracy BLEU PPL

Human reference 69.4 100.0 62.7 46.3 100.0 75.8
Cross-Align (Shen et al., 2017) 75.4 6.0 45.4 56.0 1.0 34.3
MultiDec (Fu et al., 2018) 52.0 11.3 90.1 67.3 9.1 60.3
StyleEmb (Fu et al., 2018) 18.0 16.7 56.1 43.6 15.1 60.1
DeleteAndRetrieve (Li et al., 2018) 79.0 16.0 66.0 51.2 29.3 55.4
G-GST (Sudhakar et al., 2019) 73.6 25.9 49.7 31.3 29.9 42.6
B-GST (Sudhakar et al., 2019) 64.3 22.6 59.4 35.2 26.6 127.5
Style transformer (Dai et al., 2019) 77.1 29.2 42.4 40.1 41.1 42.2
Ours (1) 91.8 13.7 88.4 68.5 18.6 96.4
Ours (2) 86.9 15.2 80.8 62.4 21.0 88.7
Ours (3) 79.8 17.2 74.5 55.8 23.0 82.7

accuracy is, the lower the bilingual evaluation understudy (BLEU) score.

Reflecting the given style. We measure how much the style changes by the model using the fastText
classifier (Joulin et al., 2017). We train this classifier on each training dataset; the number of training
epochs is 25, a bi-gram sequence is used, and the learning rate is 1.0. The style control score for this
criterion is the accuracy, and the higher the value is, the better the performance.

Content preservation. Content preservation is measured by the BLEU score (Papineni et al., 2002),
which is a measure of how much the output sentence overlaps with the input sentence. The generated
output sentence is compared with reference data written by a human. A higher BLEU score indicates
that the transferred sentence preserves the source content.

Fluency. We use a language model toolkit to measure the fluency of the generated sentences (Stolcke,
2002). This language model estimates the prior probabilities of word strings and computes the perplexity
(PPL) of each test sentence. We use tri-grams to train this model. This measurement is applied to the test
data to obtain the PPL, where a smaller PPL value means a more fluent sentence.

4.4 Results

Quantitative evaluation result. Table 1 shows the Quantitative evaluation results on the Yelp and Ama-
zon datasets. In the Yelp dataset, compared with the DeleteAndRetrieve model (Li et al., 2018), the
model with the highest accuracy among the previous studies, our model with setting (1) shows a higher
accuracy, while our model with setting (2) shows a better accuracy and BLEU score. Overall, the accu-
racy of our model is higher than that of the others, and the PPL performance is lower. In the Amazon
dataset, our model’s accuracy is slightly lower than that of the MultiDec model (Fu et al., 2018), but the
BLEU score is much better. Additionally, the other models are able to generate only one sentence (single
modality), but our models can generate multiple outputs from a single input by adjusting the strength.
By altering the strength, trade-offs are induced between the accuracy and BLEU score. By decreasing
the hyperparameter w, the style accuracy is decreased, and the BLEU and PPL scores are improved.

Adjusting the style strength. As mentioned before, our model can control how much the style of
the sentence is changed by learning style embedding. In Figure 3, we use PCA (Wold et al., 1987) to
visualize how the data embedding is changed as adjusting the style strength. More specifically, the latent
representation that is the direct output of the encoder is represented as source, and the one after adding

2122

Table 2: Generated samples corresponding to different controlled values of the hyperparameter w on
the Yelp dataset. The greater the strength, the more it affects the style of the sentence.

Negative→ Positive
Input other than that , food here is pretty gross .
w=8 other than that , food here is pretty nice and authentic salad .
w=9 other than that , food here is pretty good and enjoy warm .
w=10 other than that , food here is pretty nice and authentic salad .
Input so , no treatment and no medication to help me deal with my condition .
w=8 so , best treatment and no medication to help me deal with my condition .
w=9 so , best treatment and no medication to help me deal with my life .
w=10 so , best treatment and great medication to help me deal with my life .

Positive→ Negative
Input he is very thorough and genuinely cares for his customers .
w=8 he is very thorough and genuinely cares for his customers total saying .
w=9 he is very thorough and never cares for standing his customers under .
w=10 he is very lazy and did not cares for his customers mostly .
Input this course is one of the finest in the area .
w=8 this course is one of the finest in the trash area .
w=9 this course is not one of the finest in the area pay .
w=10 this course is not one of the finest in the trash area .

the style embedding using the style strength w is indicated as a transferred sample. In the source data of
Figure 3, the positive sentences are located on the left side, and the negative sentences are on the right
side. As the degree of style increases, the positive samples move toward the right side, which denotes
a negative style, while the negative samples move toward the left side of the image. In other words,
as the style strength increases, the samples obviously transfer to different styles. Table 2 shows the
generated outputs with different weight settings. As the transfer results vary, the sentence preservation
performance is not good. There is a trade-off between the diversity of the results and the preservation of
sentences. Additionally, Table 3 presents the outputs using their own style. For example, if the input is
positive, the style inserted is also positive. The other method (Dai et al., 2019) shows the reconstructed
outputs. However, the results of our model reflect the original style more strongly, and expressions such
as “trashy”, “barely”, and “great” are added.

Separation of the generation part and style part. As mentioned before, the generation models em-
ployed in previous studies were responsible for both the sentence reconstruction and the style modifica-
tion tasks. In our study, we separate the style part from the reconstruction model so that each model can
focus on its own task. Table 3 shows the sentence reconstruction performance without using style infor-
mation to verify that each component is effectively separated in our model. The previous model clearly
does not use any style information, and the style changes even when the reconstruction is performed.
However, our model completely focuses on the restoration of the input. As a result, the two parts of our
model are well divided, and each part focuses on its own task.

5 Conclusion

In this paper, we proposed a transformer-based autoencoder model for the text style transfer task that is
combined with a separate style embedding module based on the similarity measurement with the latent
text representation. With this style embedding part, our model can adjust the style strength of the output.
In both Yelp and Amazon datasets, our model showed better accuracy and BLEU scores than previous
models. In particular, our approach generated a variety of outputs with regard to the style strength.
Additionally, with the input’s own style, the generated sentences could represent the initial style more

2123

Table 3: Generated samples with their own style as the target on the Yelp dataset. The other model
reconstructs only the input, while our model generates more sentimental sentences.

Negative→ Negative
Input so , no treatment and no medication to help me deal with my condition .
(Dai et al., 2019) so , no treatment and no medication to help me deal with my condition .
Ours so , no treatment and no medication to help me deal with my pain .
Input food was cold (still frozen) , i had the ribs .
(Dai et al., 2019) food was cold (still frozen) , i had the ribs .
Ours food was cold (still frozen) , i had the trash ribs .
Input the pizza is offered without toppings and it ’s lacking in flavor .
(Dai et al., 2019) the pizza is offered without toppings and it ’s lacking in flavor .

Ours the pizza is offered without toppings and it ’s barely lacking in flavor .
Positive→ Positive

Input i love this place , the service is always great !
(Dai et al., 2019) i love this place , the service is always great !

Ours i love this place , the service is always great and delicious !
Input the service was amazing and the staff was very friendly .
(Dai et al., 2019) the service was amazing and the staff was very friendly .

Ours the service was amazing and the staff was very friendly and great .
Input it is the most authentic thai in the valley .
(Dai et al., 2019) it is the most authentic thai in the valley .
Ours it is the most authentic thai in the valley and great service .

Table 4: Reconstruction results without using style information. A lower accuracy means a better
reconstruction performance because the accuracy score represents how much of the style is transferred.
The Self-BLEU score is computed by the input test data.

Model Accuracy Self-BLEU PPL
Style transformer (Dai et al., 2019) 43.1 58.8 45.0
Ours 7.0 65.1 48.9

strongly than the previous models. On the other hand, our model’s PPL performance was lower than
that of other methods. Our model focuses more on the reconstruction task than other models and this
restoration causes a decrease in PPL performance because our model tends to restore content words such
as conjunctions or connection words that need to be changed when the style changes. In the future, we
would improve the model to address this issue. We also plan to apply the normalization schemes from
the image domain, such as batch-instance normalization (Nam and Kim, 2018) and spatially adaptive
normalization (Park et al., 2019), to our model. Exploring methods to combine style information with
the latent space will be helpful for enhancing the performance.

Acknowledgements

This research was supported by the National Research Foundation of Korea grant funded by the Korea
government (MSIT) (No. NRF-2019R1A2C1006608).

References
Ning Dai, Jianze Liang, Xipeng Qiu, and Xuan-Jing Huang. 2019. Style transformer: Unpaired text style transfer

without disentangled latent representation. In Proceedings of the 57th Annual Meeting of the Association for

2124

Computational Linguistics, pages 5997–6007.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. 2018. Style transfer in text: Exploration
and evaluation. In 32rd AAAI Conference on Artificial Intelligence.

Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion trends with one-
class collaborative filtering. In Proceedings of the 25th International Conference on World Wide Web, pages
507–517.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. 2017. Toward controlled
generation of text. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1587–1596. JMLR. org.

Harsh Jhamtani, Varun Gangal, Eduard Hovy, and Eric Nyberg. 2017. Shakespearizing modern language using
copy-enriched sequence to sequence models. In Proceedings of the Workshop on Stylistic Variation, pages
10–19.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga Vechtomova. 2019. Disentangled representation learning for
non-parallel text style transfer. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 424–434.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda
Viégas, Martin Wattenberg, Greg Corrado, et al. 2017. Google’s multilingual neural machine translation sys-
tem: Enabling zero-shot translation. Transactions of the Association for Computational Linguistics, 5:339–351.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017. Bag of tricks for efficient text clas-
sification. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 427–431. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: A method for stochastic optimization. In The International
Conference on Learning Representations.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. 2018. Unsupervised machine
translation using monolingual corpora only. The International Conference on Learning Representations.

Guillaume Lample, Sandeep Subramanian, Eric Smith, Ludovic Denoyer, Marc’Aurelio Ranzato, and Y-Lan
Boureau. 2019. Multiple-attribute text rewriting. The International Conference on Learning Representations.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018. Delete, retrieve, generate: a simple approach to sentiment
and style transfer. In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1865–1874.

Dianqi Li, Yizhe Zhang, Zhe Gan, Yu Cheng, Chris Brockett, Ming-Ting Sun, and Bill Dolan. 2019. Domain
adaptive text style transfer. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 3295–3304.

Hyeonseob Nam and Hyo-Eun Kim. 2018. Batch-instance normalization for adaptively style-invariant neural
networks. In Advances in Neural Information Processing Systems, pages 2558–2567.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 311–318.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. Semantic image synthesis with spatially-
adaptive normalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2337–2346.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving neural machine translation models with
monolingual data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 86–96.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2017. Style transfer from non-parallel text by
cross-alignment. In Advances in neural information processing systems, pages 6830–6841.

Andreas Stolcke. 2002. Srilm-an extensible language modeling toolkit. In 7th International Conference on Spoken
Language Processing, pages 901–904.

2125

Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Maheswaran. 2019. Transforming delete, retrieve, generate
approach for controlled text style transfer. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3260–3270.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the
inception architecture for computer vision. In The IEEE Conference on Computer Vision and Pattern Recogni-
tion(CVPR), pages 2818–2826.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems, pages
5998–6008.

Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinghan Shen, Xinyuan Zhang, Ricardo Henao, and
Lawrence Carin. 2018. Joint embedding of words and labels for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2321–2331.

Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis. Chemometrics and intelligent
laboratory systems, 2(1-3):37–52.

Jingjing Xu, Xu Sun, Qi Zeng, Xuancheng Ren, Xiaodong Zhang, Houfeng Wang, and Wenjie Li. 2018. Unpaired
sentiment-to sentiment translation: A cycled reinforcement learning approach. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 979–988.

Yanpeng Zhao, Victoria W. Bi, Deng Cai, Xiaojiang Liu, Kewei Tu, and Shuming Shi. 2018. Language style
transfer from non-parallel text with arbitrary styles. The International Conference for Learning Representations.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei Efros. 2017. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In The IEEE International Conference on Computer Vision(ICCV), pages
2223–2232.

