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Abstract
In this work we describe libMPNode, an OpenMP runtime de-
signed for efficient multithreaded execution across systems
composed of multiple non-cache-coherent domains. Rather
than requiring extensive compiler-level transformations or
building new programming model abstractions, libMPNode
builds on recent works that allow developers to use a tra-
ditional shared-memory programming model to build ap-
plications that are migratable between incoherent domains.
libMPNode handles migrating threads between domains, or
nodes, and optimizes many OpenMP mechanisms to reduce
cross-node communication.While applicationsmay not scale
as written, we describe early experiences in simple code
refactoring techniques that help scale performance by only
changing a handful of lines of code. We describe and evaluate
the current implementation, report on experiences using the
runtime, and describe future research directions for multi-
domain OpenMP.

CCS Concepts • Computing methodologies → Paral-
lel computing methodologies; • Computer systems or-
ganization→ Multicore architectures;

Keywords OpenMP, non-cache-coherent multicores, scala-
bility
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1 Introduction
In recent years there has been an increasing shift towards
multicore, heterogeneous and distributed architectures to
compensate for the limited increases in single core scalabil-
ity [13, 27]. Additionally, there has been an explosion in big
data – data volumes are projected to grow 40% every year
for the next decade [30], meaning there is insatiable demand
for compute power to mine new and increasing sources of
data. Computer systems are undergoing a revolution to deal
with this data, from the architecture to system software and
applications.

Because of these trends and due to the complexities of scal-
ing interconnects to larger core counts [17], the systems com-
munity has experienced new interest in moving from soft-
ware architectures for fully cache-coherent systems to those
composed of multiple incoherent domains, where cache co-
herence is provided only within a domain, as shown in Fig-
ure 1. Recent works have developed software architectures
for mobile SoCs containing incoherent CPU cores [1, 19],
servers with incoherent compute elements [3, 4, 12] or even
rack-scale clusters [21–23]. In these architectures, the soft-
ware treats each cache coherence domain as a node and
provides cross-node execution and memory coherence trans-
parently to applications. This allow developers to continue
using traditional shared-memory programming models to
target multi-domain systems, eliminating the need for new
programming models [7, 9, 11, 22] or complex compiler tech-
niques and runtime systems that are limited due to the visible
split between cache coherence domains [18, 20, 31].
However, while these new software systems provide the

ability to execute shared-memory applications across multi-
ple domains, running multithreaded applications like those
parallelizedwithOpenMP aswritten (i.e., distributing threads
across all domains) can incur significant overheads due to
cross-domain communication. In particular cross-domain
data accesses caused by false sharing [29], synchronization
or even regular memory accesses are orders of magnitude
slower than DRAM accesses due to software-provided mem-
ory consistency. This problem is exacerbated with increasing
numbers of domains, as the software must spend more time
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Figure 1. Due to the complexities of scaling hardware cache
coherence (left), systems designers have begun coupling
together multiple incoherent domains or nodes via inter-
connects like system buses or high-speed links. Hardware
coherence is provided within a single node but not across
nodes (right) – the software, i.e., OS, middleware or user
application, handles cross-node coherence.

enforcing cross-domain consistency. How can OpenMP ap-
plications, including the runtime and application itself, be
optimized for cross-domain multithreaded execution?

In this work, we describe the design and implementation of
a new runtime named libMPNode, which allows developers
to create multi-domain applications from existing OpenMP
code by leveraging software-provided shared-memory ab-
stractions. Because of flexibility of the shared-memory ab-
straction, we were able to survey applications from several
benchmark suites without any code modifications. From this
initial survey we identified several sources of bottlenecks,
both in the OpenMP runtime and in how OpenMP was used
by the developer. For the runtime, we optimized libMPNode
to be domain-aware and reorganized OpenMP initialization
and synchronization to minimize cross-domain communica-
tion. For OpenMP usage, we identified several OpenMP best-
use practices to increase multi-domain scalability. Finally,
we identified several future directions for multi-domain op-
timization. We present the following contributions:

• We describe libMPNode’s design and implementation,
including parallel team creation, hierarchical primi-
tives for efficient synchronization and compiler data
placement optimizations;

• We present initial usage experiences, including how
developers should utilize OpenMP’s directives to re-
move unnecessary overheads;

• We present an initial evaluation of libMPNode on an
emulated multi-domain system comprised of servers
interconnected via high-speed network. Our results
reveal that libMPNode’s multi-node implementation
achieves up to a 38x speedup on 8 nodes for synchro-
nization primitives versus a naïve implementation and
provides a geometric mean speedup of 3.27x for scal-
able applications versus the fastest time on a single
node;

• We identify remaining bottlenecks caused by data
transfer overheads and propose future directions for
better utilizing cross-domain interconnect bandwidth.

2 Related Work
Traditionally, developers have used the message passing
interface (MPI) to distribute execution across nodes [11].
Deemed the “assembly language of parallel processing” [18],
MPI forces developers to orchestrate parallel computation
and manually keep memory consistent across nodes through
low-level send/receive APIs, which leads to complex applica-
tions [4]. Partitioned global address space (PGAS) languages
like Unified Parallel C [9] and X10 [7] provide language,
compiler and runtime features for a shared memory-esque
abstraction on clusters. How threads access global memory
on remote nodes is specific to each language, but usually
relies on a combination of compiler transformations/runtime
APIs and requires the user to define thread and data affini-
ties (i.e., which threads access what data). More recently,
many works have re-examined distributed shared memory
abstractions in the context of new high-bandwidth intercon-
nects. Grappa [22] provides a PGAS programming model
with many runtime optimizations to efficiently distribute
computation across a cluster with high-speed interconnects.
Grappa relies on a tasking abstraction to hide the high costs
of remote memory accesses through massive parallelism,
meaning many types of applications may not fit into their
framework.

Previous works evaluate OpenMP on software distributed
shared memory systems [5, 14, 20]. These approaches re-
quire complex compiler analyses (e.g., inter-procedural vari-
able reachability) and transformations (software DSM con-
sistency boilerplate, data privatization) in order to translate
OpenMP to DSM abstractions, which limit their applicability.
OpenMP-D [18] is another approach whereby the compiler
converts OpenMP directives into MPI calls. This process
requires sophisticated data-flow analyses and runtime profil-
ing/adaptation to precisely determine data transfers between
nodes. Additionally, OpenMP-D limits its scope to applica-
tions that repeat an identical set of computation multiple
times. OmpCloud [31] spans OpenMP execution across cloud
instances using OpenMP 4.5’s offloading capabilities [24].
However, computation must fit into a map-reduce model
and developers must manually keep memory coherent by
specifying data movement between nodes.
Previous works have studied migrating threads between

multiple nodes. Operating systems like Kerrighed [21], K2 [19]
and Popcorn Linux [15, 16, 25] provide a single system image
between non-cache-coherent nodes interconnected via high
speed links. In particular, they provide the ability to migrate
threads between nodes by transplanting the thread’s con-
text. Additionally, they provide a distributed shared memory
(DSM) abstraction to applications which allow threads to
run on multiple nodes as if they were cache coherent. The
DSM layer migrates data on-demand between nodes by in-
tercepting OS page faults and transferring page data using
message passing between the kernel instances on each node.
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in t vecsum ( const int ∗ vec , s i z e _ t num) {
s i z e _ t i ;
in t sum = 0 ;

#pragma omp parallel for reduction(+:sum)
for ( i = 0 ; i < num ; i ++) sum += vec [ i ] ;
return sum ;

}

Listing 1. OpenMP vector addition

While there are variations, most DSM implementations use
a multiple reader/single writer protocol which enforces se-
quential consistency across machines at a page granularity.
These two abstractions are integrated deeply into the OS so
that unmodified shared memory applications can run across
multiple non-cache-coherent nodes. None of these works,
however, have studied or optimized execution of a single
application across multiple nodes and the performance impli-
cations of the shared-memory abstraction for simultaneous
cross-node execution.

3 Design & Implementation
In this section we describe the design and implementation
of libMPNode for transparently running multithreaded ap-
plications across multiple incoherent domains. libMPNode
leverages Popcorn Linux [16], namely transparent thread
migration and distributed shared memory, to allow appli-
cation developers to use a well-studied and simple shared
memory parallel programming model in multi-node systems.
Cross-node thread migration is implemented similarly to OS
continuations [15]; threads begin by making a system call
into the thread migration service. The original thread is put
to sleep on the source node, and a new thread is instanti-
ated with the original thread’s context on the remote node,
returning to user-space to continue normal execution. Pop-
corn Linux provides an OS-level abstraction for distributed
shared memory. By carefully managing page permissions,
the OS can force threads accessing remote memory to fault,
allowing the OS to transparently intercede on the thread’s
behalf. Data pages are migrated between nodes to optimize
for locality, similarly to a cache coherence protocol. Pop-
corn Linux uses a multiple-reader/single-writer protocol [25],
which enforces sequential consistency between nodes. Mul-
tiple nodes may have read-only copies of a data page (and
may access it in parallel), but nodes must acquire exclusive
access to a page in order to write to it. Nodes invalidate other
copies of the page before they may gain exclusive access,
preserving the single-writer invariant. Because the DSM
is implemented transparently by the OS, existing shared-
memory applications can execute across nodes unmodified.
The complete details of Popcorn Linux can be found in past
works [3, 4, 15, 16, 25].

libMPNode is node-aware and organizes execution so as
to minimize cross-node communication by placing threads
into a per-node hierarchy during team startup (Section 3.1).

During subsequent execution, libMPNode breaks OpenMP
synchronization primitives into local and global components
(Section 3.2). Even though this design implements OpenMP
abstractions more efficiently than a node-unaware runtime,
the user can have a significant impact on performance. We
discuss how several sources of inefficiency within applica-
tions can be refactored to further optimize execution (Sec-
tion 3.3).

3.1 Distributed OpenMP Execution
OpenMP consists of a set of compiler directives and runtime
APIs which control creating teams of threads to execute code
in parallel. In particular, the developer annotates source code
with OpenMP pragmas, i.e., #pragma omp, which direct the
compiler to generate parallel code regions and runtime calls
to the OpenMP runtime. Developers spawn teams of threads
for parallel execution by adding parallel directives to struc-
tured blocks, which the compiler outlines and calls through
the runtime. Additionally, OpenMP specifies pragmas for
work-sharing between threads in a team (e.g., for, task) and
synchronization primitives (e.g., barrier, critical) among
other capabilities. Listing 1 shows an example of parallelizing
vector sum with OpenMP. The parallel directive instructs
the compiler and runtime to create a team of threads to ex-
ecute the for-loop. The for directive instructs the runtime
to divide the loop iterations among threads in the team. The
reduction clause informs the runtime that threads should
sum array elements into thread-local storage (i.e., the stack)
and accumulate the value into the shared sum variable at the
end of the work-sharing region. Finally, the parallel and
for directives include an implicit ending barrier.
Internally, OpenMP functionality is implemented by a

combination of compiler transformations and runtime calls.
The compiler outlines parallel blocks into separate functions
and inserts calls to a “parallel begin” API to both fork threads
for the team and call the outlined function. Other directives
are also implemented as API calls – a for directive is trans-
lated into a runtime call which determines the lower and
upper bounds of the loop iteration range for each thread
and synchronization primitives are implemented as calls
into the runtime to wait at a barrier or execute a critical
section. While the developer can very easily parallelize and
synchronize team threads using these pragmas, their im-
plementation can drastically affect performance. OpenMP
assumes a homogeneous memory hierarchy, where accesses
to global memory are relatively uniform from all compute el-
ements in terms of latency. However for multi-node systems
this assumption is broken and accesses to arbitrary global
memory (e.g., reducing data or waiting at barriers) can cause
severe performance degradations. In order to minimize cross-
node traffic, libMPNode refactors the OpenMP runtime to
break functionality down into local (intra-node) and global
(inter-node) execution.
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Figure 2. Thread synchronization hierarchy. Red threads
perform local synchronization while green threads (node
leaders, threads 3, 6, 9 and 10) globally synchronize before
performing local synchronization. A hierarchy reduces the
number of threads performing global synchronization and
thus cross-node traffic.

Initializing thread teams. To begin a parallel region,
the OpenMP runtime forks team threads which call the
outlined parallel region to begin execution. During team
startup, libMPNode creates a logical thread hierarchy to break
OpenMP functionality into local and global computation.
Threads operate on per-node data structures whenever pos-
sible to avoid cross-node data transfers. The first place this
is utilized is when the runtime communicates parallel re-
gion startup information to threads. When the main thread
starts a new parallel region, it must communicate both the
outlined function and other execution state (references to
shared variables, work sharing data structures, etc.) to all
threads executing the new parallel region. Most OpenMP
runtimes copy this information directly into each thread’s
thread local storage. However in a DSM-based system, this
incurs 2 transfers for each thread – one for the main thread
to write the startup data and one for each thread to read.
Because this information is common to all threads in the
team, libMPNode instead sets this data once per node and
threads synchronize per-node to consume this information
(see “Synchronizing Threads” below).

Migrating Team Threads. OpenMP provides facilities
for specifying where threads should execute. In particular,
OpenMP v4 [24] describes a method for mapping threads to
physical “places” like sockets, cores and hardware threads.
libMPNode extends this capability with a “nodes” keyword
that allows users to transparently distribute threads across
nodes, while internally initializing the thread hierarchy to
match. libMPNode parses the places specification at applica-
tion startup. Threads forked at the beginning of a parallel
section enter a generic startup function inside libMPNode
where the runtime applies the placement specification to
migrate threads from the origin to remote nodes according
to the user specification. libMPNode calls into the kernel’s
thread migration service to transparently migrate to new
nodes. Threads execute as if they had never left the origin –
data is brought over on-demand and kept consistent using
the DSM layer. Post-migration, threads call into the outlined

parallel region and execute as if on a single shared memory
machine. At the end of execution, threads migrate back to the
origin for cleanup. Thus, developers can distribute threads
across nodes without changing a single line of code within
the application – libMPNode encapsulates all the machinery
necessary for interacting with the OS to migrate threads
between nodes. This also gives the runtime flexibility to re-
distribute threads between nodes if needed; for example, to
co-locate threads accessing the same memory.

Synchronizing threads. In order to facilitate optimiza-
tions listed in Section 3.2, libMPNode logically organizes
threads into local/global hierarchy for synchronization. This
enables optimizations thatmitigate cross-node traffic, a source
ofmajor overheads inDSM systems (including [16]). libMPNode
uses a per-node leader selection process whereby a leader is
selected from all threads executing on a given node to partic-
ipate in global synchronization (all other non-leader threads
synchronize within a node). As illustrated in Figure 2, this
allows libMPNode to reduce contention while providing the
same semantics as a normal synchronization. libMPNode pro-
vides two types of selection processes depending on whether
a happens-before ordering is required:
1. Optimistic selection. The first thread on a node to ar-

rive at the synchronization point is selected as the node’s
leader. The leader executes global synchronization while
other threads on the node continue in parallel, allow-
ing all threads to perform useful work without blocking.
After a global synchronization, leaders communicate re-
sults with local threads. This is useful for synchronization
which does not require any ordering, e.g., reduction op-
erations.

2. Synchronous selection. The last thread to arrive at the
synchronization point is selected as the leader and the
last per-node leader to arrive at the global synchroniza-
tion point performs any global work required. This is use-
ful for synchronization which requires a happens-before
ordering, e.g., for barriers all threads must arrive at the
synchronization point before any threads are released.

3.2 Optimizing OpenMP execution
By controlling thread distribution across nodes and organiz-
ing threads into a hierarchy, libMPNode can reduce several
sources of cross-node overhead. First, accessing remote mem-
ory takes two orders of magnitude longer in [16] than local
DRAM accesses, meaning libMPNode organizes as much
computation as possible to be performed locally. Second, the
DSM layer operates at a page granularity which can cause
pages to “ping pong” when threads on multiple nodes access
the same or discrete data on the same page. Logically orga-
nizing memory into per-node partitions can again yield large
speedups. In this section we describe compiler and runtime
optimizations to reduce these two sources of overhead.

Hierarchical Barriers. OpenMP makes extensive use of
barriers for synchronization at the end of many directives.
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s t ruc t b a r r i e r _ t PAGE_ALIGN
{ in t rem , t o t a l , s l e ep_key ; } ;
s t ruc t h y b r i d _ b a r r i e r _ t
{ b a r r i e r _ t l o c a l [NUM_NODES] , g l o b a l ; } ;

void b a r r i e r _w a i t ( h y b r i d _ b a r r i e r _ t ∗ bar ) {
in t thr_rem = atomic_sub (& bar −> l o c a l . rem , 1 ) ;
i f ( thr_rem ) {

/ ∗ Sp in a whi l e b e f o r e s l e e p i ng ,
r e t u r n i f a l l t h r e a d s a r r i v e ∗ /

i f ( do_sp in ( bar ) ) return ;
/ ∗ S l e ep u n t i l a l l t h r e a d s a r r i v e ∗ /
e l se s l e e p (& bar −> l o c a l . s l e ep_key ) ;

} e l se { / ∗ Per−node l e a d e r ∗ /
g l o b a l _ b a r r i e r ( bar ) ;
bar −> l o c a l . rem = bar −> l o c a l . t o t a l ;
wake(& bar −> l o c a l . s l e ep_key ) ;

}
}

void g l o b a l _ b a r r i e r ( h y b r i d _ b a r r i e r _ t ∗ bar ) {
in t n_rem = atomic_sub (& bar −> g l o b a l . rem , 1 ) ;
/ ∗ S l e ep u n t i l a l l l e a d e r s a r r i v e ∗ /
i f ( n_rem ) s l e e p (& bar −>s l e ep_key ) ;
e l se { / ∗ Wake up o the r l e a d e r s ∗ /

bar −>rem = bar −> t o t a l ;
wake(& bar −>s l e ep_key ) ;

}
}

Listing 2.Hierarchical barrier pseudocode. Threads call into
barrier_wait() and check to see if they are the last thread
to arrive for the node. If not, they wait at the local barrier,
only ever touching data already mapped to the node. If they
are the last thread, they are elected the node’s leader and
synchronize at the global barrier.

For many OpenMP runtimes, barriers are implemented us-
ing a combination spin-sleep approach where threads spin
until some condition becomes true, or sleep if it does not
within some fixed interval. While suitable for shared mem-
ory systems where there are few threads and cache-line
contention is relatively cheap, this form of synchronization
causes enormous overheads in multi-node systems as many
threads spin-wait on multiple nodes and cause the DSM
layer to thrash. libMPNode avoids this by using hierarchical
local/global barriers. A hierarchical barrier consists of a lo-
cal spin-wait barrier for each node and one top-level global
barrier as shown in Listing 2. Threads use a synchronous
selection process to pick a per-node leader; all threads not
selected wait at their respective local barriers. A synchro-
nous selection process is required in order to establish a
happens-before relationship between all threads arriving at
the barrier on all nodes and the global barrier release. Other-
wise, threads could be released on individual nodes before
all threads executing on all nodes had reached the barrier.
The per-node leaders wait at the global barrier for all nodes
to arrive. Threads entering the global barrier, as shown in

Listing 2, do not spin but instead do a single atomic oper-
ation, which reduces cross-node contention on the global
barrier’s state1. Once all leaders reach the global barrier, they
are released and join the local barriers to release the rest of
the threads. Note that all barriers, both local and global, are
placed on separate pages to avoid cross-node contention.

Hierarchical reductions. Similarly, reductions can also
be broken down into local and global computation. OpenMP
requires that reductions are both associative and commuta-
tive [24], meaning they can be performed in any order and
thus do not require a happens-before relationship. libMPNode
uses an optimistic leader selection process to pick per-node
leaders to reduce data for each node. The leader waits for
threads to produce data for reducing, allowing threads to
execute in parallel while it performs the reduction operation.
Once the leader has reduced all data from its node, it makes
the node’s data available for the global leader (which is also
selected optimistically). The global leader pulls data from
each node for reduction, producing the final global result.
The hierarchy again reduces cross-node traffic as reduction
data is only transferred once per node.

Moving SharedVariables toGlobalMemory.OpenMP
describes a number of data-sharing attributes which describe
how threads executing parallel regions access variables in en-
closing functions. Developers can specify variables as private,
meaning all threads get their own copy of the variable, or
shared, meaning all threads read and write the same instance
of the variable. For shared variables, the compiler typically
allocates stack space on the main thread’s stack and passes a
reference to this storage to all threads executing the parallel
region. In a multi-node setting this leads to false sharing as
threads reading/writing the shared variables contend with
the main thread as it uses its stack for normal execution.
To avoid this situation we modified clang to copy shared
variables to global memory for the duration of the parallel
region so that threads accessing these variables do not access
the main thread’s stack pages. Copying shared variables to
and from global memory could cause high overheads in situa-
tions with many and/or large shared variables. However, we
did not find this situation in the benchmarks we evaluated.

Future optimizations. Similar to the hierarchical barri-
ers, other synchronization and work sharing primitives such
as critical directives and dynamically scheduled work-
sharing regions can benefit from a hierarchical thread or-
ganization using an optimistic leader selection process to
reduce inter-node traffic. We leave these engineering opti-
mizations as future work.

3.3 Using OpenMP Efficiently
When developing libMPNodewe discovered several OpenMP
usage patterns that cause sub-optimal behavior inmulti-node

1Global synchronization could be further optimized with new kernel-level
multi-node primitives



PMAM’19 , February 17, 2019, Washington, DC, USA Robert Lyerly, Sang-Hoon Kim, and Binoy Ravindran

/ ∗ Sub−op t ima l − s t a r t many p a r a l l e l r e g i o n s ∗ /
for ( j = 0 ; j < NUM_RUNS ; j ++) {
#pragma omp parallel for private(i, price, priceDelta)

for ( i = 0 ; i < numOptions ; i ++)
. . . ( compute ) . . .

}
/ ∗ B e t t e r − s e p a r a t e p a r a l l e l and

work− s h a r i ng d i r e c t i v e s ∗ /
#pragma omp parallel private(i, price, priceDelta)
for ( j = 0 ; j < NUM_RUNS ; j ++) {
#pragma omp for

for ( i = 0 ; i < numOptions ; i ++)
. . . ( compute ) . . .

}

Listing 3. blackscholes parallel region optimization.
Rather than starting many parallel regions, users should
start fewer regions with multiple work sharing regions.

settings. Many of these sources of overhead can be rectified
by small code modifications. Here we detail how developers
can avoid these overheads.

Remove excessive parallel region begins. Each parallel
directive causes the compiler to generate a new outlined func-
tion and the runtime to start a new thread team to execute
the parallel region.While most OpenMP runtimes maintain a
thread pool to avoid overheads of re-spawning threads, each
encountered parallel region causes communication with the
main thread, e.g., passing function and argument pointers
to team threads in order to execute the region. Even with
the previously described per-node team start optimization,
this can cause high overheads for applications that start
large numbers of parallel regions. As shown in Listing 3 for
the blackscholes benchmark, users should lift parallel di-
rectives out of loops to avoid these initialization overheads
wherever possible.

Access memory consistently across parallel regions.
Cross-node execution overheads are dominated by the DSM
layer, and thus data placement in the cluster. In order to min-
imize data movement, threads should use the same data ac-
cess patterns when possible to avoid shuffling pages between
nodes. Listing 4 shows an example from cfdwhere a copy op-
eration accesses memory in a different pattern from the com-
pute kernel. The optimized version (copy_distributed())
instead copies data using the same access pattern.

Use master instead of single directives. OpenMP pro-
vides a number of easy-to-use synchronization primitives,
but users should substitute single for master directives
when possible. single directives require two levels of syn-
chronization – the first thread to encounter the single block
executes the contained code while other threads skip the
block and wait at an implicit barrier. This functionality is
implemented by atomically checking if a thread is the first
to arrive. However this synchronization operation requires
cross-node traffic, leading to significant overheads. Users
should utilize master and barrier directives together to im-
plement the same semantics. The master directive specifies

void c ompu t e _ s t e p_ f a c t o r ( . . . ) {
#pragma omp parallel for

for ( in t b lk =0 ; b l k < n e l r / b l eng th ; ++ b lk ) {
in t b _ s t a r t = b l k ∗ b leng th ,

b_end = ( b l k + 1 ) ∗ b l eng th ;
for ( in t i = b _ s t a r t ; i < b_end ; i ++) {

f l o a t d en s i t y = v a r i a b l e s [ i + . . . ] ;
. . . ( compute ) . . .

}
}

}
/ ∗ Sub−op t ima l − does not a c c e s s a r r a y s in

same way as c ompu t e _ s t e p_ f a c t o r ( ) ∗ /
void copy ( . . . ) {
#pragma omp parallel for

for ( in t i = 0 ; i < N ; i ++)
o l d _va r [ i ] = v a r i a b l e s [ i ] ;

}
/ ∗ B e t t e r − use same memory a c c e s s p a t t e r n ∗ /
void c o p y _ d i s t r i b u t e d ( . . . ) {
#pragma omp parallel for

for ( in t b lk =0 ; b l k < n e l r / b l eng th ; ++ b lk ) {
in t b _ s t a r t = b l k ∗ b leng th ,

b_end = ( b l k + 1 ) ∗ b l eng th ;
for ( in t i = b _ s t a r t ; i < b_end ; i ++) {

o l d _va r [ i + . . . ] = v a r i a b l e s [ i + . . . ] ;
. . . ( o t h e r copying ) . . .

}
}

Listing 4. cfd memory access optimization. Threads should
access memory consistently across all parallel regions where
possible.

that only the main thread should execute a code block and re-
quires no synchronization (threads maintain their own IDs).
Thus, users get the same functionality with less overhead.

3.4 Implementation
libMPNode extends and optimizes GNU’s libgomp [10] v7.2,
an OpenMP implementation packaged with gcc. For the
optimizations that require compiler-level code generation
changes, we modified clang/LLVM v3.7.1 due to its cleaner
implementation versus gcc. However, clang emits OpenMP
runtime calls to LLVM’s libiomp [28], a complex cross-
OS and cross-architecture OpenMP implementation with
3 times more lines of code versus libgomp. We opted for
simplicity and added a small translation layer (∼400 lines
of code) to libMPNode to convert between the two. Note
that libMPNode’s design is not tied to the choice of either
compiler or OpenMP runtime – we chose this particular com-
bination simply for ease of implementation. In addition to
the runtime changes, we added a small memory allocation
wrapper around malloc that organizes memory allocations
into per-node regions. This allowed us to remove sources
of false sharing, i.e., if threads on separate nodes allocate
data on the same page they can cause a large amount of
contention and unintentionally bottleneck execution.
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4 Evaluation
In this section we evaluate libMPNode on a small cluster to
emulate a multi-domain setup, including where libMPNode
currently provides good performance and areas of improve-
ment for future research. In particular we evaluate the fol-
lowing questions:

• How do the OpenMP runtime optimizations described
in Sections 3.1 and 3.2 scale to multiple nodes? [4.1]

• How do applications perform both with and without
the optimizations described in Section 3.3 when scaled
to multiple nodes? [4.2]

• What types of applications currently run well when
using libMPNode and what types could benefit from
future optimizations? [4.3]

Experimental Setup.We evaluated libMPNode on a clus-
ter of 8 Xeon servers, each of which contains 2 Intel Xeon
Silver 4110 processors (max 2.1GHz clock) and 96 GB of
DDR4-2667MHz RAM. Each Xeon processor has 8 cores with
2-way hyperthreading for a total of 16 threads per processor,
or 32 threads per server. We ran up to 16 threads per server
due to scalability limitations in [16]. Each server is equipped
with a Mellanox ConnextX-4 Infiniband adapter supporting
bandwidth up to 56 Gbps.

Applications.We evaluated OpenMP benchmarks from
PARSEC [6], Rodinia [8] and NASA Parallel Benchmark [2,
26] suites. We selected a subset of benchmarks that 1) had
enough parallel work to scale across multiple nodes and 2)
had representative performance characteristics from which
we could draw conclusions about libMPNode’s effectiveness.
Of note, we were able to survey cross-node performance for
26 benchmarks by only re-compiling and re-linking with
our infrastructure. We performed an initial evaluation of
benchmarks to determine scalability and contention points,
then optimized applications as described in Section 3.3. We
consider execution on a single server as the baseline, as
comparing to other cluster programming solutions would
require either significant application refactoring or complex
compiler/runtime extensions to support the applications (one
of the major benefits of libMPNode).

4.1 Microbenchmarks
First we evaluated the effectiveness of the hierarchy in scal-
ing multi-node synchronization for several OpenMP primi-
tives. The first microbenchmark we ran spawns 16 threads
on each node from 1 to 8 nodes (no cross-node execution
for 1 node) and executes 5000 barriers in a loop. Figure 3
shows the average barrier latency with and without hierar-
chy optimizations. Clearly libMPNode’s hierarchy provides
much better scalability – a naïve implementation where all
threads on all nodes wait at a single global barrier leads to
tens of millisecond latencies that drastically increase with
node count (up to 72.4 milliseconds for 8 nodes). Meanwhile

Figure 3. Barrier latency for different numbers of nodes with
and without hierarchical barriers, in microseconds.

Figure 4. Reduction latency for different numbers of nodes
with and without hierarchical reductions, in microseconds.

the hierarchical barrier leads to much better scalability with
up to a 1.9 millisecond latency for 8 nodes, a 38x speedup.

We next ran a microbenchmark that sums all the elements
in an array to stress cross-node parallel reductions. We again
spawned 16 threads per node and allocated 50 pages of data
for each thread to accumulate – each thread received the
same amount of work to remove load imbalance effects on
reduction latencies. Figure 4 shows the latency when per-
forming a naïve reduction (all threads use atomic operations
on a global counter) versus a hierarchical reduction (leaders
first reduce locally and then globally). Similarly to barriers,
hierarchical reductions have much better scalability than
normal global reductions, taking 11 and 58 milliseconds on
8 nodes, respectively. Interestingly, the performance gap on
8 nodes between the normal and hierarchical reductions is
only 5.4x. This is due to how the compiler implements re-
ductions – the compiler allocates a thread-local copy of data
to be reduced on each thread’s stack and passes a pointer to
that data to the runtime. Each per-node leader passes that
pointer to the global leader for reduction, which causes con-
tention on the per-node leader’s stack page (global leader
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reads reduction data, per-node leader uses stack for nor-
mal execution). Nevertheless, the hierarchy provides large
performance benefits.

4.2 Benchmark Performance
Next, we ran benchmarks to evaluate the effectiveness of
optimizations listed in Section 3.3. All benchmarks were run
with hierarchical barriers and reductions enabled. Figures 5-
10 show application performance when run with varying
numbers of nodes (x-axis) and threads per node (trend lines).
The y-axis shows runtime of each configuration in seconds;
lower numbers mean better performance. Dotted red lines
indicate application performance before optimization while
solid blue lines indicate running time after optimization.
Application performance falls into three categories: ap-

plications that scale with more nodes (blackscholes, EP,
kmeans and lavaMD), applications that exhibit some scalabil-
ity but have non-trivial cross-node communication (CG) and
applications that do not scale (cfd). For applications that
scale, running with the highest thread count on 8 nodes led
to a geometric mean speedup of 3.27x versus the fastest time
on a single machine, or 4.04x not including blackscholes
which has a significant sequential region. For CG, the fastest
multi-node configuration achieved a slowdown of 5.4%,mean-
ing there is plenty of room for performance optimization. The
optimizations described in Sections 3.3 help for every multi-
node configuration in every single application, although its
effects are limited in those that do not scale. The scalable
applications experience further performance gains by lifting
shared variables into global memory and applying light-
weight code modifications. lavaMD and kmeans experienced
the largest benefits from optimizations, in particular lifting
shared variables into global memory and using per-node
memory allocations.

4.3 Performance Characterization
Here we describe application characteristics that have a sig-
nificant impact on performance and future directions for
further optimization in [16] and libMPNode.
Scalable applications. These applications have little-to-

no communication between threads on different nodes and
thus once the initial data exchange between nodes has been
completed, threads run at full speed without inter-node com-
munication. This is the ideal scaling scenario, but requires
problems with large datasets that can be processed com-
pletely independently. Scalability is only limited by bench-
mark data size (EP-C, kmeans, lavaMD) or serial portions
within the application (blackscholes).

Mildly-scaling applications. These applications share
non-trivial amounts of data between threads during execu-
tion. For example, CG-C uses arrays of pointers to access
sparse matrices through indirection, meaning there is little
data locality when accessing matrix elements. We believe
that prefetching up-to-date copies of data across nodes could

significantly improve performance for these types of appli-
cations.

Non-scalable applications.These applications havemany
small parallel regions, low compute-to-memory ratios and
continually shuffle pages between nodes. cfd iteratively
scans one variables array and locally writes a new one. In
the next iteration, these two array are swapped, leading to
huge DSM layer overheads as writes must be propagated
among nodes and reads that were replicated across nodes
must be invalidated. There is not enough computation to
amortize the cost of shuffling data. Instead, application de-
velopers would need to find alternate sources of parallelism,
i.e., performing several of the computations in parallel. This
could be achieved through nested OpenMP parallel regions;
we leave implementing this functionality within the thread
hierarchy as future work.
From the previously described characteristics, the main

performance limitation was attributed to cross-node data
shuffling in and between work-sharing regions. In order to
further investigate system bottlenecks, we evaluated how
much network bandwidth the DSM layer was able to utilize
by running cfd on 2 nodes with 32 threads and capturing
the number of pages transmitted in one second intervals to
determine time varying bandwidth usage. Throughout the
parallel portion of the application the messaging layer used
on average 85.2 MB/s of bandwidth, close to two orders of
magnitude less than 56 Gbps Infiniband can provide. This
leads us to believe that future efforts should focus on how
to use the ample available cross-node network bandwidth in
order to better hide cross-node memory access latencies.

5 Future Work
There are numerous opportunities for future research with
libMPNode. As previously mentioned, cross-node memory
access latencies cause severe overheads for applications that
shuffle large amounts of data between nodes. This can be
attributed to two main factors: 1) distributed shared memory
consistency overheads, and 2) on-demand data migration. In
terms of DSM overheads, enforcing sequential consistency
across nodes can block memory operations even when there
is no data transfer involved. For example, in order to write to
a page on a node, [16]’s DSM protocol first must invalidate
permissions on all other nodes and then acquire write per-
missions (along with page data). Even when the node has the
most recent page data (for example, after reading the page), a
node must first invalidate permissions on other nodes before
allowing threads write access due to sequential consistency
semantics. However, OpenMP uses a release consistency
model [24], meaning that [16]’s protocol provides stricter
guarantees than is necessary for correct OpenMP semantics.
Relaxing the DSM layer’s consistency would eliminate much
of the memory consistency maintenance overheads.
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Figure 5. blackscholes Figure 6. cfd Figure 7. CG class C

Figure 8. EP class C Figure 9. kmeans Figure 10. lavaMD

The second source of latency is due to the use of on-
demand data migration. The DSM implementation observes
memory accesses through the page fault handler and mi-
grates data at the last possible moment. While this avoids
migrating unused data, it places the data transfer latency
directly in the critical path of execution. As mentioned pre-
viously, the interconnect provides ample unused cross-node
bandwidth; techniques which leverage this bandwidth to
preemptively place data can better hide cross-node latencies.
For example, the compiler could place data “push” hints that
inform the DSM when a thread has finished writing a page
so that it can be proactively pushed to other nodes (simi-
lar in spirit to prefetching). Because OpenMP work sharing
regions often structure memory accesses affine to loop itera-
tions, the compiler could analyze memory access patterns in
work sharing regions and inject data placement hints into
the application.

6 Conclusion
In this work we described libMPNode, a runtime for eas-
ily creating multi-node applications using OpenMP. We de-
scribed how libMPNode distributes application threads and
provides a hierarchical thread organization for incoherent
domain systems. Using this hierarchy, libMPNode optimizes
synchronization including hierarchical barriers and reduc-
tions to speed up cross-node operations. Additionally, libMPNode
includes compiler optimizations to lift shared variables to
global memory to avoid cross-node false sharing. Using
libMPNode, we detailed several OpenMP usage patterns that

can be easily changed to achieve much better performance
over multiple nodes. Finally, we evaluated libMPNode on a
small cluster, demonstrating a 3.27x geometric mean speedup
compared to single node execution. We also identified sev-
eral limiting factors in both the application and infrastructure
that we believe can be remedied further increase libMPNode’s
performance. Because of libMPNode’s performance, we be-
lieve OpenMP is a viable and easy to use general purpose
parallel programming model that can utilized for targeting
emerging multi-node systems.
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