
Citation: Yoo, I.; Park, H.; Lee, S.-W.;

Ryu, K.-Y. Building Traceability

Between Functional Requirements

and Component Architecture

Elements in Embedded Software

Using Structured Features. Appl. Sci.

2024, 14, 10796. https://doi.org/

10.3390/app142310796

Academic Editor: Alexander

Barkalov

Received: 24 October 2024

Revised: 6 November 2024

Accepted: 18 November 2024

Published: 21 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Building Traceability Between Functional Requirements and
Component Architecture Elements in Embedded Software Using
Structured Features
Insun Yoo 1 , Hyoseung Park 1, Seok-Won Lee 1,2,3 and Ki-Yeol Ryu 1,2,*

1 Department of Computer Engineering, Ajou University, Suwon 16499, Republic of Korea;
dlsnfl18@ajou.ac.kr (I.Y.); bravephs88@ajou.ac.kr (H.P.); leesw@ajou.ac.kr (S.-W.L.)

2 Department of Software and Computer Engineering, Ajou University, Suwon 16499, Republic of Korea
3 Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea
* Correspondence: kryu@ajou.ac.kr

Abstract: In embedded software for critical domains such as medical devices and defense, require-
ment traceability is essential for ensuring quality attributes. Standards and regulations mandate
traceability between requirements and artifacts such as design elements and code. However, existing
methods often overlook the hardware-dependent nature of embedded systems or conduct traceability
retroactively, which may affect consistency. This study introduces a structured feature-based approach
to component architecture design, bridging the gap between requirements and design to ensure
traceability. The structured feature model supports traceability between functional requirements,
software components, and hardware elements in embedded systems. A case study demonstrates
that structured features can effectively map the requirements to design artifacts, helping to visualize
relationships through a traceability matrix. Although the process is manual, structured features
improve efficiency in the early stages of design and create traceable links between requirements and
architectural elements.

Keywords: embedded software; functional requirement; requirements traceability; component
architecture; structured feature

1. Introduction

Embedded software plays a critical role in various application domains, including
medical devices and defense, where requirements traceability has become an indispensable
aspect of software development and management processes [1,2]. In particular, ensuring
traceability between requirements and design is crucial for guaranteeing the reliability and
safety of software. Requirements traceability aids in effectively managing the changes and
updates throughout the software lifecycle, contributing to project flexibility.

Embedded software must operate in real time under constrained hardware resources,
necessitating close integration between software and hardware. In such complex envi-
ronments, clear traceability between requirements and design becomes even more critical.
However, the process of maintaining traceability can be resource intensive, and its im-
portance is often overlooked during development [3]. Requirements traceability offers
numerous benefits even in general software development, leading to the proposal of meth-
ods that can perform traceability after development. Notably, post-development traceability
is often less effective than methods that integrate traceability throughout the developmental
lifecycle. Moreover, unlike general-purpose software, embedded software with hardware
dependencies requires specialized traceability methods that reflect these characteristics.

This study demonstrates that the structured feature-based component architecture
design method can apply structured features to trace requirements in component design.
Structured features serve as tools for bridging the gap between requirements analysis and

Appl. Sci. 2024, 14, 10796. https://doi.org/10.3390/app142310796 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app142310796
https://doi.org/10.3390/app142310796
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0009-3678-9713
https://orcid.org/0000-0002-8569-0236
https://doi.org/10.3390/app142310796
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app142310796?type=check_update&version=2

Appl. Sci. 2024, 14, 10796 2 of 23

design, effectively reflecting the requirements in the component architecture [4]. We have
analyzed how structured features can support traceability not only between functional
requirements and components but also between hardware elements affected by embedded
software and components.

This paper proposes a method for applying structured features to ensure traceabil-
ity within a component-based embedded software development process. The proposed
method supports the component-based design process by enabling traceability between re-
quirement analysis and component design, thereby ensuring traceability among functional
requirements, components, and hardware elements affected by embedded software.

The rest of this paper is structured as follows: Section 2 discusses the background of
requirements traceability analysis, covering component-based software architecture design
processes, structured features, and the structured feature-based design process; Section 3
presents a review of existing requirements traceability methods; Section 4 analyzes the
application of structured features at each step of the design process, helping to visualize
the relationships between artifacts; Section 5 explains the traceability of structured features
through a case study showing the intermediate outputs that reflect the requirements in the
design; finally, Sections 6 and 7 summarize the findings, discuss their limitations, present
our conclusions, and propose future research directions.

2. Preliminaries

This section provides an overview of the key concepts and methodologies that form
the foundation of the proposed approach. Component-based development and structured
features lay the groundwork for understanding how the proposed Structured Feature-based
Component Architecture Design (SFCAD) integrates these concepts to achieve effective
traceability between requirements and design.

2.1. Component-Based Development

A system can be constructed based on the interaction of components and interfaces,
which exposes the system’s functionality [5]. These components are developed indepen-
dently and can be reused in other software systems. The goal of component-based devel-
opment is to simplify system development, maintenance, and extension while improving
productivity through reuse [6].

The component-based software development methodology has characteristics that can
be applied to other existing software development process models. As shown in Figure 1,
this methodology consists of two main processes, namely, the component development
process and the component-based system development process, in which components are
selected and assembled to suit the system under development. The component develop-
ment process involves developing the components that make up the system and includes
requirements analysis, design, implementation, testing, and maintenance. The components
are identified and defined in the design phase [7].

The component-based development methodology can also be effectively applied to
embedded software development [8–10]. For example, Electronic Control Units (ECUs) in
vehicles consist of multiple software components that perform various functions, and each
component can be developed independently and replaced or updated as required. This
allows automotive manufacturers to manage and maintain systems more efficiently, thereby
reducing development costs and time through component reuse in resource-constrained en-
vironments. AUTomotive Open System Architecture (AUTOSTAR) promotes the reuse and
independent development of software components by ensuring interoperability between
various ECUs and software modules through a standardized software architecture [11]. AU-
TOSAR’s architecture comprises Basic Software (BSW), a Runtime Environment (RTE), and
application software consisting of independent components. This structure enables flexible
and efficient system upgrades and new feature additions while integrating components
from various suppliers to reduce development costs and improve quality [12,13].

Appl. Sci. 2024, 14, 10796 3 of 23

Figure 1. Component-based development process.

The defined components are specified for reuse. Component specification is a tech-
nique used to ensure that others can reuse the component accurately and appropriately.
Thus, component specifications should be structured efficiently to match the purpose of the
component. Component specification following the software contract approach includes
elements such as functionality (describing the component’s functional specifications),
environment (infrastructure required for the component to run as intended), interface
(specifications for how the component is invoked and how it interacts with other compo-
nents), and nonfunctional properties (quality attributes such as performance, security, and
reliability) [14,15].

In component-based development, the components are designed and developed to
construct the target system. This research focuses on the component development stage, and
in particular on the component design phase, during which components are identified and
the component-based software architecture (CSA) (referred to in this paper as component
architecture) is constructed.

2.2. Structured Features

A feature is defined as a “Unit of functionality of a software system that satisfies
a requirement, represents a design decision, and provides a potential configuration op-
tion” [16]. It encompasses the functionality and performance of the software as perceived
from the user’s perspective, bridging the problem space with the solution space [17]. The
function block feature is an early model of the structured features used in considering both
hardware and requirements during design [18].

Structured features are built upon the function block feature by organizing hardware
and software elements into patterns, making it easier for developers to understand and
design them. Structured features are used in embedded software development to explicitly
express the relationships between hardware components and software functions and be-
tween requirements and design [19]. Structured features act as intermediaries between the
requirement and design domains, possessing a lower level of abstraction than requirements
but a higher level of abstraction than design artifacts. Therefore, structured features are
designed to contain both requirements and design elements.

As shown in Figure 2, the structured feature list L, which is a collection of structured
features, comprises the structured features. The attributes of the structured feature model
are designed to organically connect the requirements with the design. The structured

Appl. Sci. 2024, 14, 10796 4 of 23

feature model, denoted as SFid, is defined as a 6-tuple; as shown in Figure 2, it consists of a
requirement ID (RID), action (A), input data (ID), output data (OD), input event (IE), and
output event (OE). An attribute represents the action that the structured feature intends to
perform, whereas the flow of data and event attributes such as ID, OD, IE, and OE can be
represented as attributes of the structured feature.

Figure 2. Attributes of structured feature model.

The SFCAD method formalizes the connection between the problem space and solution
space through structured features [20]. As shown in Figure 3, the SFCAD process is divided
into component identification, where the components comprising the CSA are identified;
component interaction, which defines the interfaces between the identified components;
and component specification, which specifies the components. The connections between
structured features and design elements in each process were confirmed in [4]. In this study,
we further analyze the mechanisms connecting these processes.

Figure 3. Structured feature-based component architecture design process.

Structured feature analysis is derived from the hardware system model and the func-
tional requirements specification. The scope of the hardware system model encompasses
those elements of hardware systems that are affected by embedded software. The format
used to describe functional requirements may vary depending on the project or group. Be-
low is an example of the hardware system model, the functional requirements specification,
and the list of structured features produced from these sources.

Appl. Sci. 2024, 14, 10796 5 of 23

Figure 4 presents an example of the materials used to generate a structured feature
list and the resulting outputs. In (a), the hardware system model receives directional input
through a button, which sends data for pressure direction to the power window controller.
These data are then converted into rotate control data to open or close the window. The
converted rotate control data are sent to the window motor, where they are transformed
into a signal, allowing the window to open or close. In (b), the functional requirements
specification is described in a brief format, with the designer arbitrarily adding identifiers
to the requirements for structured feature analysis. In (c), the structured feature list derived
from analyzing (a) and (b) is shown. In the case study presented in this research, the
hardware system model and functional requirements specification are provided as shown
and we demonstrate that design traceability can be maintained through the structured
feature list as the design progresses.

Figure 4. An example of a structured feature produced from the structured feature analysis phase.

The structured features serve as elements that link the problem space to the solution
space. In this research, structured features are used as a means to connect the functional
requirements with the component architecture. To address the functional requirements
derived from the problem space, we have applied a component architecture design method
based on structured features. The component design process is then further analyzed using
structured features, to examine how the structured features correspond to each stage.

3. Related Works

This section reviews existing research on requirements traceability, highlighting its
significance in software engineering and the various methods developed to support it. In
addition, the challenges and approaches specific to embedded software traceability are
discussed, providing the necessary context for understanding the motivations behind the
development of the SFCAD method.

3.1. Requirements Traceability

In software development, the requirements must first be analyzed, followed by design
and implementation based on these requirements. Requirements traceability refers to the
ability to trace and manage outputs produced during the development process in both
directions across all stages [21]. Software with high requirements traceability offers several
advantages, including increased reusability, maintainability, and reliability of software
artifacts [22,23].

One of the most common methods for visualizing traceability is the use of a traceability
matrix [22,24]. A traceability matrix is a traditional technique that helps to visualize how
requirements are reflected in the design and implementation stages using a tabular format.
This allows developers to effectively manage changes in requirements and verify test

Appl. Sci. 2024, 14, 10796 6 of 23

coverage. The matrix can be adjusted to focus on specific areas of interest by rearranging
the rows and columns. Although this technique has been in use for a long time, it continues
to be adapted and employed in various domains and contexts [25–27]. In this study, we use
a traceability matrix to visualize the relationships between functional requirements and
components, demonstrating how our proposed method supports traceability.

Approaches using Information Retrieval (IR) and Natural Language Processing (NLP)
have been applied to requirements traceability because of their advantage in generating a
large number of traceability links more quickly than manual expert-driven tracing [28–31].

However, general software traceability methods often do not account for the hardware
dependencies inherent in embedded software, thereby limiting their direct applicability to
embedded systems. Additionally, although the IR and NLP approaches offer the advantage
of automating traceability, they still require preprocessing to filter relevant information
and overcome language barriers, meaning that expert involvement is required to ensure
accuracy [30,32,33]. This study proposes a design method in which structured features act
as traceability links for the hardware dependencies of the embedded software. As this is a
manual method, it can flexibly accommodate a wide range of inputs.

3.2. Requirements Traceability in Embedded Software

Requirements traceability plays a critical role in embedded software development by
helping to identify the origin of safety-related requirements, clarify these requirements,
and make it easier to understand the interrelationships between software artifacts, thereby
facilitating the management of requirements changes [34].

For these reasons, standards related to embedded software development mandate re-
quirements traceability. In the automotive software domain, relevant standards include ISO
26262 and the Automotive Software Process Improvement and Capability Determination
(A-SPICE) [35]. ISO 26262 is an international standard for ensuring the functional safety of
automotive electronic systems requiring traceability of embedded software requirements.
This standard provides requirements related to requirements management, traceability, and
safety analyses. A-SPICE is a process capability evaluation model aimed at improving the
quality of automotive software development and processes [36]. A-SPICE uses traceability
to demonstrate the implementation of requirements, managing risks and helping identify
the impact of changes in requirements. Although these standards provide a framework for
improving the processes and requirements necessary for the safe development of embedded
software, they do not offer detailed guidelines on how to achieve traceability.

Embedded software design involves unique characteristics because systems must
interact with the physical environment and because factors such as real-time performance,
reliability, and hardware constraints must be considered. In this design process, require-
ments traceability is essential for verifying that all requirements are consistently reflected
from the early design stages to the final implementation [37,38].

Numerous approaches for supporting traceability in embedded software development
are based on model-driven methods. Wang et al. proposed a method using Model-Driven
Development (MDD) to generate traceability between Natural Language Requirements
(NLRs) and Architecture Analysis and Design Language (AADL) models [39]. Abdelahad
et al. proposed a traceability approach that integrates SysML with Business Process Model
and Notation (BPMN) and Decision Model and Notation (DMN) to support decision-
making requirements [40]. In their approach, SysML was used to model certain aspects of
the system, while process and decision-making activities were defined using the BPMN and
DMN standards, respectively, providing traceability between different modeling methods.
Intrigila et al. proposed a method for managing requirements in critical software, focusing
on providing requirements specifications for software development, verification, and
maintenance activities [41]. This method employs an integrated model using SysML,
BPMN, and DMN, offering efficient requirements management techniques such as V&V
(verification and validation) and traceability. Alenazi et al. proposed a mutation-driven
method that generates mutants of state-machine diagrams and uses them to identify

Appl. Sci. 2024, 14, 10796 7 of 23

accurate traceability links in automated requirements traceability [42]. Their process
includes model checking of safety requirements and identifying trace links by ensuring
that the attributes of safety requirements are preserved in the mutants, which results in
higher accuracy. Ahmadiyah et al. modeled the traceability between requirements and code
through a property-listing task [43]. Their SeFea-Trace Conceptual Model (STCM) uses
mathematical notation and a metamodel to enrich the information in the conceptual model
based on software artifact properties, thereby establishing links between implementations.

Although advantageous for automation and intuitive understanding, model-based
traceability for embedded software is often limited in its applicability because of the
diverse methods used to model the requirements, as demonstrated by the results in [44,45].
Requirements are often modeled using text, goal-oriented models, or unspecified methods
that restrict the context in which such approaches can be applied.

This study analyzes SFCAD, which is a method for designing embedded software
architecture from a functional perspective, and demonstrates how SFCAD supports trace-
ability from a requirements viewpoint. To illustrate this, we visualize the traceability matrix
in a case study. After analyzing the structured features and generating a structured feature
list, SFCAD proceeds with designer mapping components and structured features based
on direct sensor-actuator patterns. During the generation of the structured feature list, the
designer analyzes various types of requirements.

4. Proposed Method

The SFCAD method utilizes sensor–actuator patterns in the component architecture
generated based on action attributes in the structured feature list. The structured fea-
tures are then mapped to the component architecture. These are remapped in response
to changes in the architecture, driving the connection between the requirements and com-
ponent architecture elements. In this section, we analyze how structured features serve
as intermediaries between requirements and design elements in SFCAD by using them
to identify and map elements of both requirements and component architecture, thereby
demonstrating traceability through structured features.

4.1. Location of Structured Features in the Process

Structured features consist of a requirement ID, action attributes, data attributes,
and event attributes, each associated with software requirement elements and hardware
elements. The software requirement elements are extracted from refined software require-
ments specifications, whereas hardware elements are extracted from the hardware system
model. Traceability relationships can be established by reflecting the attributes of structured
features in the design of components.

Structured features are derived by analyzing the relationship between the software
requirements specification (an output of the requirements analysis phase) and the hardware
system model, which represent the hardware systems that the software influences. The
set of structured features produced iin this manner takes the form of a structured feature
list, which helps to define the scope of the software system by modeling the necessary data
flow for software development. During the design phase, the attributes of the structured
features in the structured feature list are reflected in the design, thereby establishing a
connection between the requirements and design through the structured features.

Figure 5 shows the component development process and the required outputs in this
study. In the component development process applying SFCAD, the structured feature
analysis phase is positioned between the requirements analysis phase and the design
phase. Structured feature modeling is performed during the structured feature analysis
phase, during which the attribute values of the structured feature model that constitute the
structured feature list are extracted from the requirements specification and the hardware
system model.

Appl. Sci. 2024, 14, 10796 8 of 23

Figure 5. Location of the structured feature list in the component-based development process.

4.2. Correspondence Between Components and Structured Features

In SFCAD, there is a component identification phase that first identifies the initial
components by applying the sensor–actuator pattern and then remaps the structured
features that were previously associated with the old components to the newly designed
components in order to reflect quality attributes.

4.2.1. Initial Component Identification by Structured Feature

In SFCAD, the component identification phase first identifies the initial components
by applying the sensor–actuator pattern. The set of components C that makes up the
component architecture is defined as C = {c1, c2, . . .}, where each element c denotes an
individual component in set C.

The types of components C0 that constitute the initial component architecture A0
comprise the initial sensor csensor, initial actuator cactuator, initial controller ccontroller, and
initial interface cinter f ace components, which are defined as follows:

C0 ∈
{

csensor, ccontroller, cactuator, cinter f ace

}
(1)

• csensor: InitialSensorComponent—the component that receives external input.
• ccontroller: InitialControllerComponent—the component that processes logical commands.
• cactuator: InitialActuatorComponent—the component that executes control commands.
• cinter f ace: InitialInterfaceComponent—the component that converts data.

Each of these components is categorized based on a component architecture that
follows a sensor–actuator pattern. The roles of the components are as follows: csensor
receives data into the system; ccontroller processes the received data; cactuator executes the
processed data; finally, cinter f ace connects the data flow among the three components and is
placed between them.

Structured features are mapped to the roles of initial components as follows.

M0 = map(L, C0)

csensor if SFid.Action

== Sensing
ccontroller if SFid.Action

== Control
cactuator if SFid.Action

== Actuating
cinter f ace if SFid.Action

== Transfer

(2)

The mapping information between the components, interfaces, and architecture
features in the component architecture is represented by M. Here, M is a set of pairs
⟨SFid, cm⟩ between structured features and components, or pairs ⟨SFid, In⟩ between struc-
tured features and interfaces. In this case, the number id of SF ranges from zero to ≤

Appl. Sci. 2024, 14, 10796 9 of 23

(the number of structured features in L), m ranges from zero to≤ (number of components in C),
and n ranges from zero to ≤ (number of interfaces in CSA).

The initial mapping information M0 is defined by a function map(L, C0). The function
map(SF, C0) is calculated from the structured feature list L and initial set of components
C0. The action attribute of the structured features is SFi in L, and can take four values
that represent the actions performed by the components categorized by patterns. Based
on the action attribute value, a structured feature is mapped to its corresponding initial
component. If the value of SFid.Action

is “Sensing”, then the structured feature is mapped to
the sensor component csensor, as it is responsible for reading data. If the value is “Control”,
then it is mapped to the controller component ccontroller, which processes the data. If the
value is “Actuating”, then it is mapped to the actuator component cactuator, which executes
the processed data. Finally, if the value is “Transfer”, then it is mapped to the interface
component cinter f ace, which transfers data. The mapping information M0 can be used to
provide traceability for future analyses.

The method of identifying the initial components and mapping structured features
establishes a connection between the initial component architecture and the requirements
through the sensor–actuator pattern. The action attribute of a structured feature represents
the performed action, while the unit of action corresponds to the unit of action performed by
each component in the pattern. Similarly, the initial components are divided into individual
components, each corresponding to a specific action as defined by the action attribute of
the structured feature.

4.2.2. Remapping of Structured Features and Components

As shown in Figure 3, the component identification phase in SFCAD can be performed
iteratively. As the component-based software architecture is modified, the structured fea-
tures previously mapped to the initial components are remapped to the components of the
updated component-based software architecture. This iterative component decomposition
and integration process includes modifications to the initial component-based software
architecture. These modifications can be carried out by applying the Attribute-Driven
Design (ADD) method [46] multiple times based on important quality attributes in the
target embedded system.

The mapping between structured features and components is redefined as the ADD
process progresses. Remapping of the structured features occurs by redefining the re-
lationship between component Ci in the existing component architecture and compo-
nents Ci+1 in the updated architecture after an ADD iteration. The remapping function
remap(Mi, Ci, Ci+1) is defined as follows:

Mi+1 = remap(Mi, Ci, Ci+1). (3)

The value of i in the above equation ranges from the initial component identification
described in Section 4.2.1 to the end of ADD. The function remap(Mi, Ci, Ci+1) is executed
by checking the component decomposition conditions and remapping the structured
features using the following steps:

(1) Check component decomposition conditions. During the ADD process, the designer
produces the i-th and i + 1-th design results and checks the relationships between the
components in the existing and new results, defined as follows:

∀Cic ∈ Ci, ∃Ci+1c ∈ Ci+1 | Cic
decomposedinto−−−−−−−−→ Ci+1c. (4)

For component set Ci in the i-th component architecture and updated component set
Ci+1 in the i + 1-th architecture, it is determined whether component Cic in Ci has
been decomposed into components Ci+1c in Ci+1.

(2) Remapping of structured features. If a component is determined to have been
decomposed, the structured feature SFC(i)cj

mapped to the j-th component in the i-th

Appl. Sci. 2024, 14, 10796 10 of 23

component architecture is remapped to the k-th component C(i+1)ck
in the updated

i + 1-th component architecture using the algorithm shown below.
First, in line 4 of Algorithm 1, Equation (4) is applied to determine SFC(i)cj

mapped to

C(i)cj
in Mi. The structured feature is then remapped to the decomposed component.

The relationship between the remapped structured feature and the component is
added to Mi+1 and the remapping is returned, allowing the designer to maintain the
traceability information.

Algorithm 1 Update mapping info into Mi+1

Require: i-th mapping information Mi, i-th component set Ci, (i+1)-th component set Ci+1
Ensure: i-th mapping information Mi+1

1: for all j-th C(i)cj
in Ci do

2: for all k-th C(i+1)ck
in Ci+1 do

3: if C(i)cj

decomposedinto−−−−−−−−→ C(i+1)ck
then

4: SFC(i+1)ck
← SFC(i)cj

5: Put SFC(i+1)ck
’s mapping information into Mi+1

6: end if
7: end for
8: end for
9: return Mi+1

Through this process, the structured features are remapped to the updated compo-
nents, allowing the initial relationship between the structured features and initial com-
ponents to be redefined. By redefining the relationships between the components and
structured features, natural traceability between requirements and components is achieved.
Both the initial components and structured features share a common foundation based
on the actions performed within the sensor–actuator pattern. The initial components are
defined according to the actions performed by the components divided through the sensor–
actuator pattern, whereas the structured features define actions based on the interactions
between hardware elements within the sensor–actuator pattern to satisfy the requirements.
The structured features concretize the functions necessary to meet the system requirements,
while the initial components are the basic units that implement these functions. Thus, the
initial components are adjusted to accommodate the detailed requirements and actions
specified by the structured features, thereby ensuring functional consistency and integra-
tion across the entire system. Because the actions defined by the structured features are
directly linked to the operations of the initial components, the interactions of the system
can be clearly understood.

4.3. Structured Features for Allocating Interface Operations

In SFCAD, components are identified during the component identification phase, then
operations are assigned to the interfaces during the component interaction phase to define
the data flow between components. The process of assigning operations to the component
interfaces is performed by analyzing the data-related attributes of the structured features.
This assignment occurs between component cP, with a provided interface representing
the methods or functionalities offered to the outside, and component cR, with a required
interface representing the methods or functionalities that the component needs from the
outside to operate correctly.

(1) Check whether the data inputs and outputs match between component pairs. The
following equation determines whether the Input Data (ID) and Output Data (OD)
of the structured features SFcP and SFcR mapped to components cP and cR in the

Appl. Sci. 2024, 14, 10796 11 of 23

component architecture Ci match. In case of a match, data exchange occurs between
the two components.

OD(SFcP) == ID(SFcR) =⇒ exchange(cP, cR) (5)

To assign operations related to data flow via interfaces between components, the
ID and OD attributes of the structured features are compared. Structured features
categorized by the sensor–actuator pattern either receive or output data. Based
on this mechanism, data flow operations are assigned to the interfaces between
the mapped components. If OD(SFcP) and ID(SFcR) match, this signifies a data
exchange between the two components.

(2) Operation Allocation.The function that sends data from cP through its provided inter-
face and receives data in cR through its required interface is defined as exchange(cP, cR).
This function describes the process by which the data provided by cP are received
by cR.
Equation (5) is applied to line 6 of the algorithm in Algorithm 2. In order for data
exchange to occur, both the sent and received data must be defined. In this case, the
exchanged data are referred to as ProvidedData, which are the data sent from cP and
received by cR. This function is implemented using the exchange(cP, cR) function
and assigned to the interface Interface(cP, cR) between cP and cR.

Algorithm 2 Operation allocation into Interface betwee n cP and cR

Require: cP, cR
Ensure: An operation is assigned to the interface between cP and cR, Updated Mi with

interface operation’s allocation information
1: Function exchange(cP, cR) :
2: ProvidedData = cP.provideData()
3: cR.receiveData(ProvidedData)
4: if OD(SFcP) == ID(SFcR) then

5: Interface(cP, cR)
allocate←−−−− exchange(cP, cR)

6: Put SFcP and SFcR mapping information into Mi
7: end if

Operations can be assigned to the interfaces between the components in the same
manner, even for components that are re-identified during the component identification
phase. Thus, the actions of structured features affect not only the components that make
up the competent architecture but also the assignment of operations to the interfaces that
enable data interaction between components.

SFCAD uses the structured feature list generated via structured feature analysis to
identify the initial components and allocate the necessary operations to the interfaces that
connect the components. These structured features provide the foundation for the initial
component architecture design during the component identification phase and contribute
to the natural derivation of data flow between the components during the component
interaction phase.

4.4. Construction of a Traceability Matrix

In this study, the artifacts to be connected are the functional requirements and the com-
ponents and interfaces that comprise the component architecture. We use the traceability
matrix method to demonstrate the traceability between these two elements. The columns
of the traceability matrix used to visualize the traceability between the two elements are
structured as shown in Table 1.

Appl. Sci. 2024, 14, 10796 12 of 23

Table 1. Columns of the traceability matrix.

Column Name Description

Req. ID Identifier of functional requirement
SF. ID Identifier of structured feature
Component Name of component-forming component architecture
Interface Name of the interface forming the component architecture

Additional columns related to the designer’s interests can be added or removed. In
this study, the traceability matrix shown in Table 1 focuses on the traceability between
two elements: the functional requirements, represented by the ‘Req. ID’ column, and the
components and interfaces that make up the component architecture, represented by the
‘Component’ and ‘Interface’ columns.

To generate the traceability matrix TMi corresponding to the i-th design result, a struc-
tured feature list L and mapping information Mi are required. We generate a traceability
matrix using T and L as inputs with the following algorithm shown below.

In lines 2–4 of the algorithm in Algorithm 3, the attributes RID and SFid of SFid are
entered into the ‘Req. ID’ and ‘SF. ID’ rows of TMi, respectively, whereas the mapping
information pairs in Mi are added to the component and interface columns corresponding
to each structured feature. The difference is that line 2 extracts information from L, whereas
lines 3–4 extract information from Mi.

Algorithm 3 Generating TMi

Require: Structured Feature List L, i-th mapping information Mi
Ensure: i-th Traceability Matrix TMi

1: for all id-th SFid in L do
2: (Req. ID, SF. ID)← ⟨SFid.RID , SFid⟩
3: (SF. ID, Component)← ⟨SFid, cm⟩
4: (SF. ID, Inter f ace)← ⟨SFid, In⟩
5: end for
6: return TMi

The structured features serve as intermediaries that connect the requirements and
component elements. By adding a column for the identifiers of the structured features
in the traceability matrix, designers can visually confirm the connections between two
elements. More detailed relationships can be identified by referencing the structured feature
identifiers in the structured feature list, enabling a link between the traceability matrix
and structured feature list. The list of structured features also includes attributes related
to actions and hardware elements, allowing designers to verify the actions or hardware
elements of the components in the component architecture. By linking the traceability
matrix with the structured feature list, designers can effectively trace the relationships
between requirements and component architecture elements.

4.5. Ensuring Traceability of Requirements and Component Architecture Elements
4.5.1. Tracing Between Structured Features and Requirements

Software requirement specifications and hardware system models are necessary to
generate the structured features. Figure 6 shows the relationship between requirements
analysis artifacts and the attributes of the structured feature model.

Appl. Sci. 2024, 14, 10796 13 of 23

Figure 6. Association between a structured feature and artifacts.

The software requirements specification and hardware system model together directly
or indirectly compose the attributes of the structured features. Figure 6 shows the parts of
the structured feature model composed of these elements. The requirements specification
affects all attributes of the structured feature model, and contains not only functional
requirements but also non-functional requirements, as well as foundational information
such as the scope of the software being designed and developed. This information influ-
ences the entire development process, including design and implementation. To satisfy
the requirements, structured features can represent this information either directly, such as
in Req. ID attributes that specify the scope of the software, or indirectly, such as through
input and output data and events. The hardware system model is explicitly represented
by the input and output data and the events of the structured feature model. The existing
information is expressed as attribute values within the structured feature model, creating a
connection between the artifacts of the requirements analysis phase and the outputs of the
structured feature analysis phase.

A structured feature SF is defined as SFid = (RID, A, ID, OD, IE, OE), as shown
in Figure 2. The attributes of a structured feature can be classified into those related to
requirements (RID), actions (A), data (ID and OD), and events (IE and OE).

During the structured feature analysis phase, the designer refines the software require-
ment specifications into software requirement elements to enable the extraction of those
elements required for the structured features. These software requirement elements are
then assigned as values to each structured feature attribute. The hardware system model
is refined into hardware elements and assigned as values to the action-, data-, and event-
related attributes of the structured feature. Through this assignment, both the software
requirements and the hardware system model are reflected in the resulting structured
feature. This creates links between the attributes of the structured feature and the require-
ments, which can then be used to establish traceability between the requirement RID and
structured feature, as the RID is assigned to the attributes of the structured feature.

4.5.2. Tracing Between Structured Features and Component Architecture

To proceed with the structured feature analysis phase in the SFCAD process, outputs
from the requirements analysis phase such as the functional requirements specification and
hardware system model are required. Based on these outputs, the structured feature list is
analyzed and produced during the structured feature analysis phase.

The component architecture generated by SFCAD in the component-based develop-
ment process is specified for component reuse. To ensure that the component can be reused
to reflect the developer’s intent, the component specifications must include the information
necessary for reuse, such as the functionality and interfaces of the component. Figure 6
shows the relationship between the attributes of the structured features and the elements
of component specification.

During the component identification and component interaction phases of SFCAD, the
designer uses the action attributes of the structured features from the structured feature list
to generate the initial component architecture by applying a sensor–actuator pattern. Both

Appl. Sci. 2024, 14, 10796 14 of 23

the initial component architecture and the modified component architecture may change
based on the quality attributes or business requirements identified during the requirements
analysis phase. When a change occurs, the existing structured features and elements of
the component architecture are remapped accordingly. By including structured features
in the generation of the component architecture, traceability from the requirements to the
component architecture is ensured.

The attributes of the structured feature model provide the essential information for
specifying each component. The requirements specification affects all the attribute values
of the structured features, and these values directly influence the construction of the compo-
nent architecture. The functionality attribute represents the functionality of the component,
providing information about the actions the component performs. The component identity-
structured features establish a connection between the structured features and components
whereby the attributes of the structured features can be associated with the functionality
of the components. The action and data attributes of the structured features influence the
assignment of operations to interfaces during the component interaction phase, which is
based on the analysis of data and transmission flows.

Embedded software in hardware systems operates with a specific purpose. The
environment attribute refers to the environment in which the component is expected to
operate, reflecting the hardware dependencies of embedded software. The hardware
elements represented by the data and event attributes of the structured features describe
this environment and link the structured features to component specifications. The event
attribute of the structured feature is used to represent its states or events. Non-functional
properties such as the performance or execution order of the component can be associated
with the event attributes of structured features. Thus, each attribute of the structured
feature model influences various aspects of the component architecture design and plays a
crucial role in connecting requirements to the final component architecture.

5. Case Study

In this section, we demonstrate the SFCAD process and verify its application to
structured features throughout the process. To validate the capability of structured features
in establishing connections between software functional requirements and component
architecture, we conducted a case study and present the resulting artifacts. The case
study addresses the design of a component architecture for a vehicle-door control system.
Although the requirements specification comprised various requirements, in this case the
designer assumed that the functional requirements and hardware system modeling from
the requirements specification had been completed and that structured feature analysis had
been conducted based on this information.

5.1. Target System for Structured Feature Analysis

The target system for the application of structured features was a vehicle door control
system that included functional requirements such as checking whether the vehicle doors
were locked or unlocked. To demonstrate the traceability of functional requirements
and hardware elements to component architecture elements within SFCAD, we present
the software functional requirements necessary for system development along with the
hardware system model that influences the software development process. For this case
study, 15 functional requirements were selected from among 31, focusing on those related
to the hardware elements identified in the system specifications as well as those impacted
by the hardware system.

Figure 7 shows a subset of the functional requirements related to the knob switch. The
functional requirements are described alongside the hardware system necessary for the
proper operation of the requirements, differentiating between the two. Among these, hard-
ware elements that were ambiguous or unrelated to the selected functional requirements
were excluded from the hardware system model and elements related to security were
partially renamed.

Appl. Sci. 2024, 14, 10796 15 of 23

Figure 7. Functional requirements.

Based on the overall system requirements specification, we analyzed the relationships
between the hardware elements associated with the software functional requirements and
derived the hardware system model by applying the sensor–actuator pattern, as shown
in Figure 8. Centered around the Integrated Control Unit (ICU), the hardware system
model consists of an H/W switch section, Controller Area Network (CAN), and H/W
actuator section. In the hardware system model, the hardware switch section represents the
components that send signals to the ICU, which is equipped with software, the CAN section
serves as the communication channel that receives the data processed by the ICU, and the
hardware actuator section represents the components that control the external environment.
These elements are interconnected to control the system. The hardware system model is
composed of hardware switch sensors, actuators, and network communication-related
elements, making it a suitable example for illustrating the structure of software embedded
in vehicles.

Figure 8. Hardware system model.

Using the provided requirements and hardware system model, we conducted a struc-
tured feature analysis and generated a structured feature list. The structured feature list
from the case study consisted of 106 structured features, a subset of which is shown in
Figure 9. As in Figure 2, each attribute of the structured feature is represented by a column
in the structured feature list. In Figure 6, the software functional requirements are linked to
RID and the hardware system elements are connected to ID, OD, IE, and OE, indicating
that the analysis has been conducted.

Appl. Sci. 2024, 14, 10796 16 of 23

Figure 9. Structured feature list.

In this case study, the application of structured features assumes that the structured
feature analysis has already been completed and that a structured feature list has been
generated. Thus, the pairs SFid.RID , SFid, that is, REQ_F_01-01, SF-001 and REQ_F_01-01,
SF-002 in Figure 9, have already been derived. Therefore, the information for mapping
requirements and structured features is already available in the structured feature list,
which is used to create the traceability matrix.

5.2. Connection Between Structured Features and Component Architecture

This case study illustrates the process of connecting structured features with a compo-
nent architecture visualized through a traceability matrix. Mapping between the structured
features and initial components is performed by identifying the action value of the struc-
tured feature and linking it to the initial components. Figure 10 shows the results of
mapping the structured features SF-001 to SF-021 derived from the functional requirement
REQ_F_01 to their corresponding initial components.

Figure 10. Mapping of initial components and structured features related to REQ_F_01.

Appl. Sci. 2024, 14, 10796 17 of 23

‘InitialSensorComponent’ is a component that receives external stimuli into the system,
and the structured features with the action value of “Sensing” are mapped to it. In the
structured features related to REQ_F_01 in Figure 9, the features with “Sensing” values
are SF-001, SF-008, and SF-015. These features are mapped to ‘SensorComponent’, whereas
structured features with other action values are mapped to their respective initial components.

In the case study, the software architecture was designed to facilitate software system
modifications based on changes in the hardware elements that constitute the system [47].
‘InitialSensorComponent’ is responsible for receiving all the stimuli for the target system.
However, as shown in Figure 11, hardware elements that receive external stimuli exist in
various forms, such as switches and CAN channels. In order to efficiently accommodate
changes in hardware elements and improve modifiability, software functionality should
be separated according to hardware functionality. Figure 11 depicts the portion of the
architecture related to splitting REQ_F_01 to reduce the cost and time required to implement
changes when modification requirements arise in the software system.

Figure 11. Mapping of components and structured features related to REQ_F_01.

The structured features initially mapped in Figure 10 are remapped to the components
in the modified architecture as the component architecture is updated. As a result, ‘Ini-
tialSensorComponent’ is divided according to the position of the vehicle’s door sensors, as
follows: ‘SenComAstDr’ handles the function of the assistant knob switch; ‘Sen-ComRLDr’
handles the function of the rear-left knob switch; and ‘SenComRRDr’ handles the function
of the rear-right knob switch. Each component receives data from the knob switch at
the respective position in the vehicle. ‘InitialInterfaceComponent’ transforms the data
received by ‘InitialSensorComponent’ into a format that ‘InitialControllerComponent’ can
process and that other components such as ‘InitialActuatorComponent’ can receive. There-

Appl. Sci. 2024, 14, 10796 18 of 23

fore, it is divided according to the types of data that are processed. Structured features
previously mapped to the original components are remapped using the structured feature-
to-component remapping method. For example, because the output data value of SF-001
mapped to ‘SenComAstDr’ (Astunlockstate_raw) matches the input data value of SF-002
mapped to ‘ConComDr’, an operation is assigned to the interface Astdr between ‘SenCo-
mAstDr’ and ‘ConComDr’ using the method for assigning operations to the interfaces in
SFCAD. This operation facilitates the transfer of data corresponding to ‘Astunlockstate_raw’
from ‘SenComAstDr’ to ‘ConComDr’.

5.3. Traceability Matrix

The design results from SFCAD are represented using the traceability matrix described
in Section 4.4 to illustrate the relationships between artifacts. Figure 12 shows the traceabil-
ity matrix depicting the relationships between the structured features, components, and
interfaces related to requirement REQ_F_01-01 from the design process conducted in the
case study.

In Figure 12, SF-001 is mapped to ‘SenComAstDr’. It can be observed in Figure 9
that an operation needs to be assigned to the AstDr interface. These trace relationships
are visualized using the traceability matrix, which has of four columns: Req.ID, SF.ID,
Component, and Interface. Using the traceability matrix, it was possible to visually confirm
the traceability between the elements.

Figure 12. Traceability matrix related to REQ_F_01-01.

5.4. Connection Between Artifacts

The functional requirements for the automotive door control software and related
hardware elements form the foundational elements for design through structured feature
analysis. Figure 13 shows the artifacts used in the case study, including the functional
requirements list, hardware system model, structured feature list, traceability matrix, and
component-based software architecture related to REQ_F_01-01. The artifacts in Figure 13
consist of (a) the functional requirements list, (b) the hardware system model, which is
an output of the requirements analysis phase, (c) the structured feature list, which is the
output from the structured feature analysis phase, and (d) the component-based software
architecture, which is the output from the design phase. Additionally, the trace relationships
between the outputs of each phase are shown in (d) in the traceability matrix.

Appl. Sci. 2024, 14, 10796 19 of 23

Figure 13. Association between artifacts in SFCAD.

The requirement REQ_F_01-01 is related to eight structured features, as indicated
by the values in the ‘Req.ID’ column in (c). Among the structured features related to
REQ_F_01-01, SF-001 and SF-002 are influenced by the Assistant Knob Switch, which is
part of the hardware system model, as confirmed by the attribute values in the structured
feature list in Figure 13b). In the traceability matrix, SF-001 is derived from the functional
requirement REQ_F_01-01, which affects the configuration of ‘SenComAstDr’ components.
Additionally, it can be seen that the AstDr interface must transmit and receive the data
corresponding to the data-related attribute AstDrUnlockState_raw of SF-001.

6. Discussion

In our case study, we applied structured features to integrate functional requirements
and hardware system model elements into the CSA design. To achieve this, we utilized
SFCAD, analyzing outputs such as the functional requirement list, hardware system model,
structured feature list, traceability matrix, and CSA, which are all related to the functional
requirement REQ_SW_01-01.

The findings from our case study demonstrate that structured features can effectively
bridge the gap between requirements analysis and design artifacts. The attributes of the
structured features, which are derived from data and events involving both requirements
and hardware system elements, directly influence the CSA design process through SFCAD.
These attributes are reflected in key design stages, including component identification
and interface operation allocation. Additionally, by positioning the SF.ID column between
the ReqID and Component/Interface columns in the traceability matrix, the relationships
between the two artifacts are clearly visualized, resulting in enhanced traceability.

Appl. Sci. 2024, 14, 10796 20 of 23

Despite the increasing complexity of the system, SFCAD applies a sensor–actuator
pattern that addresses common challenges in the software design process. This pattern
allows for a flexible and efficient embedded software design and can be extended to other
software systems. Although the traceability process in SFCAD is manual, it provides a
practical methodology for initiating design and integrating traceability into the develop-
ment workflow.

However, this study also has some limitations. First, the software architecture can vary
depending on the designer’s perspective, meaning that the designer’s intent and viewpoint
significantly impact the final design. SFCAD currently focuses only on the functional
aspects related to data flow in CSA. While structured features include both data- and
event-related attributes, SFCAD does not yet fully utilize event attributes. Incorporating
event attributes to account for component execution timing could further enhance the tool’s
ability to model and track the dynamic characteristics of embedded software.

Second, although SFCAD promotes requirement traceability in parallel with the de-
sign process, the manual creation and management of the traceability matrix imposes an
additional burden on designers. This manual effort contributes to the tendency to conduct
requirement traceability retrospectively or ignore it altogether, despite its critical impor-
tance. Automating or partially automating this process would require the development of
tools that support design based on the mathematical models presented in Section 4.

Third, although SFCAD primarily supports traceability between requirements and de-
sign during the component development process, requirements must be traceable through-
out the entire software lifecycle, from analysis and design to implementation and main-
tenance. Currently, SFCAD specializes in the early stages of design traceability. Thus,
extending its scope to support lifecycle-wide traceability, such as converting design outputs
into code traceability, is necessary. Without establishing early traceability between the
requirements and design, the burden on designers and developers may increase in later
stages, making early traceability a critical challenge.

Future research should address these limitations by exploring the applicability of
structured features and SFCAD across diverse system environments, and should also
analyze their impact on the overall development process. In addition, optimizing the
application of structured features and developing automated tools represent ways of
further enhancing traceability and efficiency.

In conclusion, this study has demonstrated that structured features effectively narrow
the gap between requirements analysis and design, leading a more efficient CSA design
process in its early stages. These findings suggest that structured features can play an active
role in future CSA designs.

7. Conclusions

This study analyzed the requirement traceability method in SFCAD, which is a struc-
tured feature-based approach for designing component-based software architectures. SF-
CAD performs initial component identification, designing the components based on the
attributes of the structured features. SFCAD supports the connection between compo-
nents by assigning operations to the interfaces in order to define the data flow between
components. Following this design flow, designers can effectively reflect the functional
requirements in the component architecture design, which enables traceability using hard-
ware elements based on the characteristics of the structured features. Ultimately, traceability
visualization techniques such as a traceability matrix allow for an intuitive understanding
of the relationships between artifacts.

Our case study results show that structured features help to bridge the gap between
the artifacts of requirements analysis and design. The attributes of the structured features
are based on data and events that include requirements and hardware system elements, and
these attributes directly influence the CSA design through SFCAD. The attribute values of
the structured features, such as component identification and interface operation allocation,
are then reflected in the CSA design stages.

Appl. Sci. 2024, 14, 10796 21 of 23

However, because SFCAD is applied after the structured feature analysis has already
been conducted, the quality of the design outcomes is dependent on the quality of the
structured features. Furthermore, the current process is manual, which represents another
limitation. Despite these limitations, SFCAD has the potential to enhance the efficiency of
the early stages of CSA design through the use of structured features.

To address the limitations of this study, future research should explore ways to extend
SFCAD’s support for traceability to better reflect the characteristics of embedded software
and investigate the development of automated tools for requirement traceability. These
efforts are expected to enable a broader application of structured features and SFCAD
for traceability.

Author Contributions: Methodology, I.Y. and H.P.; Writing—original draft, I.Y.; Writing—review &
editing, S.-W.L.; Project administration, S.-W.L. and K.-Y.R. All authors have read and agreed to the
published version of the manuscript.

Funding: Seok-Won Lee’s work was supported by the BK21 FOUR program of the National Research
Foundation of Korea funded by the Ministry of Education(NRF5199991014091) and the Institute
of Information& communications Technology Planning & Evaluation (IITP) under the Artificial
Intelligence Convergence Innovation Human Resources Development (IITP-2024-RS-2023-00255968)
grant funded by the Korea government(MSIT).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Peraldi-Frati, M.A.; Albinet, A. Requirement traceability in safety critical systems. In Proceedings of the 1st Workshop on Critical

Automotive Applications: Robustness & Safety, Valencia, Spain, 27 April 2010; pp. 11–14.
2. Ramesh, B.; Powers, T.; Stubbs, C.; Edwards, M. Implementing requirements traceability: A case study. In Proceedings of the

1995 IEEE International Symposium on Requirements Engineering (RE’95), York, UK, 27–29 March 1995; pp. 89–95.
3. Kannenberg, A.; Saiedian, H. Why software requirements traceability remains a challenge. Crosstalk J. Def. Softw. Eng. 2009,

22, 14–19.
4. Yoo, I.; Ryu, K.Y. Structured Feature-Based Component Architecture Design from a Traceability Perspective. In Proceedings of

the 2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN), Budapest, Hungary, 2–5 July 2024;
pp. 250–252.

5. Szyperski, C.; Gruntz, D.; Murer, S. Component Software: Beyond Object-Oriented Programming; Pearson Education: London, UK, 2002.
6. Crnkovic, I. Component-based software engineering—New challenges in software development. Softw. Focus 2001, 2, 127–133.

[CrossRef]
7. Lau, K.K.; Cola, S.D. An Introduction to Component-Based Software Developement; World Scientific: Singapore, 2018.
8. Yen, I.L.; Goluguri, J.; Bastani, F.; Khan, L.; Linn, J. A component-based approach for embedded software development. In

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, ISIRC, Washington,
DC, USA, 29 April–1 May 2002; pp. 402–410.

9. Panunzio, M.; Vardanega, T. A component-based process with separation of concerns for the development of embedded real-time
software systems. J. Syst. Softw. 2014, 96, 105–121. [CrossRef]

10. Campeanu, G.; Carlson, J.; Sentilles, S. Component-based development of embedded systems with GPUs. J. Syst. Softw. 2020,
161, 110488. [CrossRef]

11. AUTOSAR (AUTomotive Open System ARchitecture). Available online: https://www.autosar.org (accessed on 10 October 2024).
12. Fürst, S.; Mössinger, J.; Bunzel, S.; Weber, T.; Kirschke-Biller, F.; Heitkämper, P.; Kinkelin, G.; Nishikawa, K.; Lange, K.

AUTOSAR—A Worldwide Standard is on the Road. In Proceedings of the 14th International VDI Congress Electronic Systems
for Vehicles, Baden-Baden. Citeseer, Baden-Baden, Germany, 7–8 October 2009; Volume 62.

13. Martínez-Fernández, S.; Ayala, C.P.; Franch, X.; Nakagawa, E.Y. A Survey on the Benefits and Drawbacks of AUTOSAR. In
Proceedings of the First International Workshop on Automotive Software Architecture, Montreal, QC, Canada, 4–8 May 2015;
pp. 19–26.

14. Meyer, B. Applying’design by contract’. Computer 1992, 25, 40–51. [CrossRef]

http://doi.org/10.1002/swf.45
http://dx.doi.org/10.1016/j.jss.2014.05.076
http://dx.doi.org/10.1016/j.jss.2019.110488
https://www.autosar.org
http://dx.doi.org/10.1109/2.161279

Appl. Sci. 2024, 14, 10796 22 of 23

15. Geisterfer, C.M.; Ghosh, S. Software component specification: A study in perspective of component selection and reuse. In
Proceedings of the Fifth International Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS’05),
Orlando, FL, USA, 13–16 February 2006; p. 9.

16. Apel, S.; Kästner, C. An overview of feature-oriented software development. J. Object Technol. 2009, 8, 49–84. [CrossRef]
17. Turner, C.R.; Fuggetta, A.; Lavazza, L.; Wolf, A.L. A conceptual basis for feature engineering. J. Syst. Softw. 1999, 49, 3–15.

[CrossRef]
18. Yoo, I.; Lee, J.; Ryu, K.Y. Function Block Features to improve Traceability in Embedded Software Architecture Design. In

Proceedings of the Korea Software Congress 2019; Korean Institute of Information Scientists and Engineers: Seoul, Republic of Korea,
2019; pp. 275–277.

19. Park, H.; Yoo, I.; Ryu, K.Y. Structured Feature Model for Feature Engineering of Embedded Software. In Proceedings of the Korea
Software Congress 2021; Korean Institute of Information Scientists and Engineers: Seoul, Republic of Korea, 2021; pp. 248–250.

20. Yoo, I.; Park, H.; Ryu, K.Y. Component-based Embedded Software Architecture Design based on Structured Feature. J. KING
Comput. 2023, 19, 36–48.

21. Gotel, O.C.; Finkelstein, C. An analysis of the requirements traceability problem. In Proceedings of the IEEE International
Conference on Requirements Engineering, Colorado Springs, CO, USA, 18–21 April 1994; pp. 94–101.

22. Lamsweerde, A.V. Requirements Engineering: From System Goals to UML Models to Software Specifications; John Wiley & Sons, Ltd.:
Hoboken, NJ, USA, 2009.

23. Wiegers, K.E.; Beatty, J. Software Requirements; Pearson Education: London, UK, 2013.
24. Madaki, A.A.; Zainon, W.M.N.W. A review on tools and techniques for visualizing software requirement traceability. In

Lecture Notes in Electrical Engineering, Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power
Applications: Enhancing Research and Innovation through the Fourth Industrial Revolution; Springer: Berlin/Heidelberg, Germany,
2022; pp. 39–44.

25. Suteeca, K. Requirement Traceability Matrix for SaaS Development. In Proceedings of the 2023 Joint International Conference
on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and
Telecommunications Engineering (ECTI DAMT & NCON), Phuket, Thailand, 22–25 March 2023; pp. 183–187.

26. Hidayati, N.N.; Rochimah, S. Requirements traceability for detecting defects in agile software development. In Proceedings of
the 2020 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), East Java, Indonesia,
26–28 August 2020; pp. 248–253.

27. Jeong, S.; Cho, H.; Lee, S. Agile requirement traceability matrix. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, Gothenburg, Sweden, 27 May–3 June 2018; pp. 187–188.

28. Zhang, S.; Wan, H.; Xiao, Y.; Li, Z. IRRT: An Automated Software Requirements Traceability Tool based on Information Retrieval
Model. In Proceedings of the 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion
(QRS-C), Guangzhou, China, 5–9 December 2022; pp. 525–532.

29. Lyu, Y.; Cho, H.; Jung, P.; Lee, S. A systematic literature review of issue-based requirement traceability. IEEE Access 2023,
11, 13334–13348. [CrossRef]

30. Pauzi, Z.; Capiluppi, A. Applications of natural language processing in software traceability: A systematic mapping study. J. Syst.
Softw. 2023, 198, 111616. [CrossRef]

31. Laliberte, C.D.; Giachetti, R.E.; Kolsch, M. Evaluation of Natural Language Processing for Requirements Traceability. In
Proceedings of the 2022 17th Annual System of Systems Engineering Conference (SOSE), Rochester, NY, USA, 7–11 June 2022;
pp. 21–26.

32. Zhao, L.; Alhoshan, W.; Ferrari, A.; Letsholo, K.J.; Ajagbe, M.A.; Chioasca, E.V.; Batista-Navarro, R.T. Natural language processing
for requirements engineering: A systematic mapping study. ACM Comput. Surv. (CSUR) 2021, 54, 1–41. [CrossRef]

33. Wang, B.; Wang, H.; Luo, R.; Zhang, S.; Zhu, Q. A Systematic Mapping Study of Information Retrieval Approaches Applied to
Requirements Trace Recovery. In Proceedings of the SEKE, Virtual, 1–10 July 2022; pp. 1–6.

34. Katta, V.; Raspotnig, C.; Karpati, P.; Stålhane, T. Requirements management in a combined process for safety and security
assessments. In Proceedings of the 2013 International Conference on Availability, Reliability and Security, Regensburg, Germany,
2–6 September 2013; pp. 780–786.

35. ISO 26262; Road Vehicles—Functional Safety. International Organization for Standardization: Geneva, Switzerland, 2011.
36. VDA Working Group 13. Automotive SPICE Process Assessment/Reference Model, 4th ed.; VDA Working Group 13: Berlin,

Germany, 2023.
37. Sikora, E.; Tenbergen, B.; Pohl, K. Requirements engineering for embedded systems: An investigation of industry needs. In

Proceedings of the Requirements Engineering: Foundation for Software Quality: 17th International Working Conference, REFSQ
2011, Essen, Germany, 28–30 March 2011; pp. 151–165.

38. Sikora, E.; Tenbergen, B.; Pohl, K. Industry needs and research directions in requirements engineering for embedded systems.
Requir. Eng. 2012, 17, 57–78. [CrossRef]

39. Wang, F.; Yang, Z.B.; Huang, Z.Q.; Liu, C.W.; Zhou, Y.; Bodeveix, J.P.; Filali, M. An approach to generate the traceability between
restricted natural language requirements and AADL models. IEEE Trans. Reliab. 2019, 69, 154–173. [CrossRef]

40. Abdelahad, C.; Riesco, D.; Kavka, C. Requirements Traceability using SysML Diagrams and BPMN. Int. J. Adv. Softw. 2020,
13, 129–138.

http://dx.doi.org/10.5381/jot.2009.8.5.c5
http://dx.doi.org/10.1016/S0164-1212(99)00062-X
http://dx.doi.org/10.1109/ACCESS.2023.3242294
http://dx.doi.org/10.1016/j.jss.2023.111616
http://dx.doi.org/10.1145/3444689
http://dx.doi.org/10.1007/s00766-011-0144-x
http://dx.doi.org/10.1109/TR.2019.2936072

Appl. Sci. 2024, 14, 10796 23 of 23

41. Intrigila, B.; Della Penna, G.; D’Ambrogio, A.; Campagna, D.; Grigore, M. Process-Oriented Requirements Definition and Analysis
of Software Components in Critical Systems. Computers 2023, 12, 184. [CrossRef]

42. Alenazi, M.; Niu, N.; Savolainen, J. A novel approach to tracing safety requirements and state-based design models. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 27 June–19 July
2020; pp. 848–860.

43. Ahmadiyah, A.S.; Rochimah, S.; Siahaan, D. Modeling Traceability between Requirements and Coding Using the Property Listing
Task. IEEE Access 2024, 12, 129274–129289. [CrossRef]

44. Souza, E.; Moreira, A.; Goulão, M. Deriving architectural models from requirements specifications: A systematic mapping study.
Inf. Softw. Technol. 2019, 109, 26–39. [CrossRef]

45. Ahmed, S.; Ahmed, A.; Eisty, N.U. Automatic transformation of natural to unified modeling language: A systematic review.
In Proceedings of the 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and
Applications (SERA), Las Vegas, NV, USA, 25–27 May 2022; pp. 112–119.

46. Bass, L.; Clements, P.; Kazman, R. Software Architecture in Practice: Software Architect Practice_c3; Addison-Wesley: Boston, MA,
USA, 2012.

47. Bengtsson, P.; Lassing, N.; Bosch, J.; van Vliet, H. Architecture-level modifiability analysis (ALMA). J. Syst. Softw. 2004,
69, 129–147. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/computers12090184
http://dx.doi.org/10.1109/ACCESS.2024.3441041
http://dx.doi.org/10.1016/j.infsof.2019.01.004
http://dx.doi.org/10.1016/S0164-1212(03)00080-3

	Introduction
	Preliminaries
	Component-Based Development
	Structured Features

	Related Works
	Requirements Traceability
	Requirements Traceability in Embedded Software

	Proposed Method
	Location of Structured Features in the Process
	Correspondence Between Components and Structured Features
	Initial Component Identification by Structured Feature
	Remapping of Structured Features and Components

	Structured Features for Allocating Interface Operations
	Construction of a Traceability Matrix
	Ensuring Traceability of Requirements and Component Architecture Elements
	Tracing Between Structured Features and Requirements
	Tracing Between Structured Features and Component Architecture

	Case Study
	Target System for Structured Feature Analysis
	Connection Between Structured Features and Component Architecture
	Traceability Matrix
	Connection Between Artifacts

	Discussion
	Conclusions
	References

