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Abstract: Effective predictive modeling is crucial for assessing and mitigating energy consumption
and CO2 emissions in light-duty vehicles (LDVs) throughout the whole value chain of an organization.
This study enhances the modeling of LDV CO2 emissions by developing novel approaches to
analyzing vehicle feature datasets. New tree-based machine learning models are developed to
increase the accuracy and interpretability in modeling the CO2 emissions in LDVs. In particular, this
study develops a new algorithm called dynamic perturbation additive regression trees (DPART). This
new algorithm integrates dynamic perturbation within an iterative boosting framework. DPART
progressively adjusts prediction values and explores various tree structures to improve predictive
performance with reduced computation time. The effectiveness of the new ensemble-tree-based
models is compared to that of other models for the vehicle emission data. The results demonstrate
the new models’ capability to significantly improve predicting accuracy and reliability compared to
other models. The new models also enable identifying key vehicle features affecting emissions, and
thus provide valuable insights into the complex relationships among vehicle features in the dataset.

Keywords: CO2 emissions; emission assessment; predictive modeling; tree ensemble; light-duty
vehicle; sustainable value chain; Scope 3 emissions

1. Introduction

Growing concerns about carbon dioxide (CO2) emissions from light-duty vehicles
(LDVs) such as cars, vans, and light trucks have increased the need to accurately assess
these emissions for carbon footprint deduction. In 2022, the total CO2 emissions from LDVs
were around 3.5 billion tons, which is a significant portion of the total global emissions,
accounting for approximately 5 percent [1]. These huge emissions should be reduced
6% annually until 2030 to achieve the Net-Zero emissions target [1]. LDV CO2 emissions
are also a significant portion of the greenhouse gas (GHG) emissions in the whole value
chain of any organizations [2]. Regulatory agencies such as the Environmental Protection
Agency (EPA) [3,4] and various national agencies within the European Union (EU) [5]
are implementing progressively stricter monitoring protocols and lowering limits on the
GHG emissions from LDVs. For instance, recently, the EU’s ‘Fit for 55’ package [6] and
the EPA’s proposed 2027 emissions standards [7] are expected to play pivotal roles in
reducing emissions from the transportation sector. Such efforts to reduce these emissions
have driven a growing need for effective predictive models that can accurately evaluate
emission levels based on various vehicle characteristics. Accurate emission modeling is also
especially necessary in assessing the GHG emissions for Scope 3 reporting and reduction
planning [2]. The Scope 3 emissions may account for a large portion of the GHG emissions
of a corporate value chain due to the huge amount of transportation of goods within the
value chain, but still are hard to evaluate accurately due to a variety of factors influencing
vehicle emissions [2].

There is a need for advanced modeling approaches that can better handle the chal-
lenges in LDV emission modeling. Various advanced machine learning approaches have
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been employed to enhance predictive modeling for emissions. Although previous studies
have provided valuable insights into the factors influencing emissions [8], they have often
relied on linear or less flexible modeling techniques that may not fully capture the underly-
ing patterns in the data. Moreover, CO2 emissions from LDVs are influenced by a complex
interplay of diverse vehicle attributes and operational conditions. This complexity makes it
difficult for conventional models to achieve high accuracy and consistency.

Developing models that balance accuracy, interpretability, and computational effi-
ciency is essential to address the multifaceted nature of vehicle emissions. Regression
trees provide a basic approach to modeling, offering simplicity and interpretability. Other
tree-based methods, such as random forests and boosting, offer significant advantages in
managing complex datasets and improving prediction accuracy. However, these meth-
ods can suffer from interpretability issues and high computational costs. Boosting can
sometimes overfit if it is not carefully tuned, particularly with excessive model complexity.

To address these challenges, this study proposes a new algorithm called dynamic
perturbation additive regression trees (DPART) to enhance predictive modeling of CO2
emissions in LDVs. DPART employs a dynamic perturbation mechanism within an iterative
boosting framework to continuously refine model performance. This approach allows
DPART to progressively adjust predicted values and explore various tree structures to
capture complex interactions in high-dimensional datasets. The algorithm also allows
DPART to achieve comparable results with other tree-based models while significantly
reducing computation time.

This study makes several contributions to the predictive modeling for LDV CO2 emis-
sions. First, it introduces DPART, a novel algorithm that leverages dynamic perturbation.
Dynamic perturbation allows DPART to either fit a completely new tree to explore global
patterns or perturb the previous tree to refine the current model’s performance. DPART shows
substantial predictive accuracy and model stability over traditional tree-based methods by
fitting a collection of trees that capture complex patterns, refine performance, and avoid
overfitting. Second, this paper demonstrates the efficiency of DPART. The results indicate
that DPART achieves comparable prediction accuracy with significantly less computation
time, compared to conventional models with larger iteration settings. The dynamic pertur-
bation mechanism allows for incremental improvements, optimizing the model-building
process and minimizing redundant computations. Third, the new prediction models quan-
tify variable importance, enhancing the understanding of factors affecting emission levels.
Overall, the findings show the potential of the new models to improve emission modeling
and help establish effective strategies for assessing and reducing vehicle emissions in the
whole supply chain [2,9]. By offering more accurate and robust CO2 emission predictions,
the new models overcome the limitations of conventional models [8].

This paper is structured as follows: Section 2 overviews the relevant literature.
Section 3 presents dataset characteristics, tree-based prediction methods and evaluation
metrics. Section 4 analyzes and discusses the results. The conclusions are given in Section 5.

2. Review of the State-of-the-Art Research

The challenge of accurately modeling CO2 emissions from light-duty vehicles (LDVs)
has received increasing attention due to its critical implications for environmental sustain-
ability, regulatory compliance, and emission reporting [2,10,11]. The complexity of vehicle
emissions arises from a myriad of factors, such as engine sizes, fuel types, driving condi-
tions, and vehicle design. Traditional linear models, while simple and easily interpretable,
often struggle to capture these intricate relationships fully [12]. Given these challenges,
non-linear models may provide a more effective means of capturing the intricacies of
emissions data.

Conventional non-linear models overcome the limitations of such linear models.
These models have been known as more robust alternatives, offering enhanced accuracy
by accommodating the complex interactions between variables [13]. Generalized additive
models (GAMs) and other non-linear approaches have demonstrated the ability to capture
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these interactions [14]. GAMs provide improved predictive performance but are less
interpretable compared to linear models. GAMs are also restricted to additive structures,
which can lead to missing important interactions between variables. These characteristics
can limit their practical applicability in real-world scenarios [13,14].

Tree-based ensemble methods provide a flexible approach to dealing with the complex-
ity in the datasets. Advancements in ensemble methods, such as random forests, bagging,
and boosting, have addressed some of these limitations by combining multiple models
to improve accuracy and robustness [15–17]. These methods can model complex relation-
ships and interactions between features more effectively. Most ensemble methods were
developed to mitigate overfitting. Ensemble methods outperform traditional linear models
in predictive accuracy [18]. For instance, a bagged tree ensemble regression model shows
better performance than linear models in predicting train body vibrations and reduces data
requirements without additional monitoring equipment [19]. Random forests have been
effectively applied to assess vehicle fuel efficiency, capturing non-linear interactions be-
tween features [20]. Gradient boosting has shown success in modeling traffic flow patterns
with improved accuracy compared to linear regression [21]. Despite improvement, some of
these methods can still struggle with bias [22].

The Bayesian additive regression trees (BART) method represents a significant ad-
vancement in tree-based modeling [23]. BART incorporates a Bayesian framework to
improve model predictions and reduce bias. Although BART has been effective in vari-
ous applications, its performance can fluctuate depending on configuration parameters
and computational resources [24,25]. For instance, BART has been successfully used in
healthcare, but it has shown sensitivity to the choice of priors and the complexity of the
tree structure, which can affect its predictive performance [26]. In environmental modeling,
BART’s accuracy can vary with dataset size and the computational power available [27,28].
This sensitivity indicates that while BART is effective, further refinements are needed
to improve efficiency and manage computational costs, rather than solely focusing on
improving accuracy.

Despite these advancements, significant gaps remain in the effectiveness of current
models to capture the characteristics and complexities of LDV emissions. Previous studies
have demonstrated that sophisticated models can improve prediction accuracy but often
sacrifice interpretability or require extensive computational resources. This study aims to
fill these research gaps in the existing literature.

3. Data and Methodology

This section presents the data characteristics and tree-based models used for predicting
vehicle CO2 emissions. It also introduces a new algorithm for prediction models and
discusses the evaluation metrics of their performance.

3.1. Characteristics of the Emission Data

The data utilized in this study are comprehensive, with a wide range of emission-
related data and vehicle features. The dataset was collected from the open data portal
of the Canadian government [29]. The dataset spans the years 2014–2023 and includes
10,233 cases with CO2 emissions, fuel consumption, and key specifications for various LDVs.
CO2 emissions range from 94 to 593 g/km. Vehicle attributes include engine sizes (engine
displacement or cylinder volume), the number of cylinders in an engine, the number of gear
steps, and fuel types. Engine sizes span from 0.9 to 6.8 L, engines can have 3 to 12 cylinders,
and gear steps can be up to 10. Fuel types are categorized as diesel (type D), ethanol
E85 (type E), regular gasoline (type X), and premium gasoline (type Z). These diverse
feature ranges in the data and a sufficient number of data points for each category support
a thorough analysis.

The dataset was further refined to improve analysis quality. The summary statistics
of the CO2 emission data are shown in Table 1 with categorical features not shown for
display simplicity. In order not to distort the analysis, a few outliers were removed from
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consideration: engine sizes over 8 L and cylinder counts of more than 16 for a small number
of sports cars. Moreover, fuel consumption values were excluded in analysis, because
CO2 emissions are values calculated directly from fuel consumption values, as noted in [8].
A detailed description, preprocessing, and exploratory analysis of the dataset are available
in other studies [8].

Table 1. Summary statistics of the dataset for CO2 emission prediction.

Gear Step Engine Size Cylinder Count CO2 Emissions

Min. 0 0.9 3 94
Median 6 3 6 248

Max. 10 6.8 12 593
Class numeric numeric integer numeric

The effects of LVD fuel types on CO2 emissions are illustrated in Figure 1 in terms
of the average and variability. The LDVs using ethanol E85 (type E) have higher average
CO2 emissions compared to those using the other fuel types. The LDVs with fuel type
E release on average 277 g/km of CO2, which exceeds 248 g/km for diesel. The broader
range of emissions for ethanol E85 suggests inconsistencies in environmental performance
compared to diesel. The LDVs with regular gasoline (type X) have an average emission of
236 g/km but show a wide range of emission levels. The LDVs with fuel type Z, though
similar in median emissions to diesel, show the widest range of CO2 emissions.
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Figure 1. Average CO2 emissions by fuel type.

LDV CO2 emissions show an upward trend with engine size and cylinder count
variables across different numbers of gear steps, as shown in Figure 2. The linear regression
lines illustrate the association between CO2 emissions and the two key vehicle attributes.
The linear regression lines for each gear group based on engine size and cylinder count
variables exhibit varying accuracy, with R-squared (R2) values ranging from 0.24 to 0.93 for
the engine size variable and 0.25 to 0.85 for cylinder count. There is an upward trend for
each gear step. Figure 2a shows how CO2 emissions vary with engine sizes across different
gears, revealing a tendency for larger engines to generally emit more CO2. Figure 2b shows
the effect of the number of cylinders on CO2 emissions with a similar pattern. The vehicles
with more cylinders tend to emit more CO2. These plots demonstrate the significant impact
of both the engine size and cylinder count variables on emissions.
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3.2. Tree-Based Methods
3.2.1. Existing Tree-Based Methods

The regression tree or decision tree (RT) method is a simple and straightforward
approach for modeling relationships in data. A regression tree divides the predictor space
into G distinct regions. In region Rg, the predicted value is the average response value (ŷRg )
of the training observations. These regions are created to minimize an error measure such
as the residual sum of squares (RSS):

RSS =
G

∑
g=1

n

∑
i∈Rg

(
yi − ŷRg

)2
(1)

Regression trees offer simplicity and interpretability but often do not perform well
compared to other supervised learning techniques.

To enhance prediction accuracy and avoid bias, ensemble methods are widely used.
Such methods include random forests, bagging, Bayesian additive regression trees (BART),
and boosting. These methods comprise generating many trees known as weak learners and
consolidating their predictions into a unified outcome.

In this paper, BART is also employed to compare prediction accuracy with the other
methods. BART is a flexible, non-parametric Bayesian model that constructs an ensemble
of trees to capture complex relationships in the data. The output is the sum-of-trees model,
which is an additive model with multivariate components. Each tree in the ensemble
contributes to the final combined prediction, which is more accurate than an individual
prediction by a tree.

The construction of the trees in BART is designed to ensure comprehensive pattern
capture. Each tree in BART is built randomly and tries to capture the patterns that the
current set of trees has not yet captured. BART builds trees iteratively using the original
data. In addition, each tree undergoes perturbation to ensure a more thorough exploration
of the model space and prevent local optima. This approach prevents the model from being
stuck in suboptimal solutions and improves generalization ability to new data.

BART’s Bayesian framework provides a probabilistic interpretation of the model. It
uses a Bayesian framework to estimate the tree structures and the terminal node parameters,
allowing for a probabilistic interpretation of the model and its predictions. This is achieved
through a Markov chain Monte Carlo (MCMC) sampler, which samples the model parame-
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ters and trees from the posterior distribution [23]. MCMC enables the exploration of the
complex, high-dimensional space of possible tree models, providing a way to approximate
the posterior distribution and make robust inferences.

By averaging over multiple trees and leveraging the Bayesian framework, BART
mitigates overfitting and improves the robustness of the predictions. This approach is
particularly effective in scenarios with complex data patterns and interactions.

3.2.2. Dynamic Perturbation Additive Regression Trees

Motivated by the idea of BART, the dynamic perturbation additive regression trees
(DPART) method is proposed to further improve tree models applied to the LDV dataset.
BART constructs each tree in a random manner to capture residual signals by drawing
new trees from a posterior distribution using MCMC sampling. Instead, DAPRT fits either
a fresh new tree or the perturbed version of the previous tree on a modified version of the
original training dataset.

DPART is a novel machine learning algorithm that enhances predictive performance
by integrating a dynamic perturbation mechanism within an iterative boosting framework.
DPART begins with an initialization phase where each tree’s prediction is set, followed by
the computation of an initial combined prediction. In the iterative process, the residuals are
calculated based on the gap between the observed values and the current predictions. At
each iteration, new trees are fitted to these residuals, with a probability-based mechanism
to perturb the previous iteration’s tree, thus exploring alternative tree structures. This
perturbation, handled by a subroutine, involves randomly adjusting prediction values
at the terminal nodes of trees, helping the model to avoid local optima and improve its
generalization capability. The iterative process continues until the specified number of
iterations is performed. The initial “warm-up” iterations are discarded, and the remaining
predictions are averaged to produce the final output.

DPART consists of two parts: Algorithms 1 and 2. Algorithm 1 is the main procedure of
DPART, managing the initialization, residual computation, and tree-fitting steps. Algorithm
2 is embedded within this process; Algorithm 2 is a subroutine responsible for introducing
dynamic perturbations at the terminal nodes of trees.

Algorithm 1 shows the overall structure of DPART. The DPART algorithm begins by
initializing each tree’s prediction and computing an initial combined prediction. In this
initial iteration (m = 1, where m is the variable denoting iteration number), the combined
prediction is given by f̂ 1(x) = 1

n ∑n
i=1 yi because all the T trees are initially set with a single

root node, with f̂ 1
t (x) = 1

nT ∑n
i=1 yi.

In the remaining iterative process (m > 1), the partial residual is computed and used to
update each tree, one at a time. The partial residual for each data point, ri, is calculated
as the difference between the actual target value yi and the sum of f̂t from all trees in the
previous iteration, except for the tree currently being updated. This can be mathematically
expressed as

ri = yi −
(
∑T

t=1 f̂ m−1
t (xi)− f̂ m−1

t (xi)
)

. (2)

The calculated residuals are then used to adjust the corresponding tree f̂ m
t , with the

focus on refining the tree structure to improve the fit to the residuals and reduce the overall
error. This process is repeated iteratively for each tree to gradually minimize residuals and
improve prediction accuracy. Depending on a specified perturbation probability, either
a fresh new tree or the perturbed version of the previous tree f̂ m−1

t is used to fit to the
residual. Perturbing the tree allows exploration of alternative tree structures that may
improve the fit to partial residual. After each iteration, the combined predictions are
updated. Finally, the post-processing step computes the mean prediction after discarding
a specified number of initial samples (warm-up).
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Algorithm 1: The main procedure of DPART.

1. Input : Xtrain, yi, T, M, B, P
2. Output : Final prediction function f̂ (x)
3. // Initialization: Initialize each tree’s prediction
4. for t = 1 to T do
5. f̂ 1

t (x) =
(

1
nT

)
sum(yi for i = 1 to n)

6. end for
7. // Compute the initial combined prediction
8. f̂ 1(x) = sum( f̂ 1

t (x) for t = 1 to T)
9. end for
10. // Iterative Process
11. for m = 1 to M do
12. for t = 1 to T do
13. // Compute partial residual
14. ri = yi − (sum( f̂ m−1

t (xi)for t = 1 to T)− f̂ m−1
t (xi))

15. // Fit a new tree with specified perturbing probability P
16. if m > 1 and random () < P then
17. f̂

m
t (x) = PerT( f̂ m−1

t , Xtrain, ri)
18. else
19. f̂

m
t (x) = NewT(Xtrain, ri)

20. end if
21. // Compute the updated combined prediction
22. f̂

m
(x) = sum( f̂ m

t (x) for t = 1 to T)
23. end for
24. end for
25. // Post-processing: Compute the mean prediction after B warm-up samples
26. f̂ (x) = 1

M−B sum( f̂ m(x) for m = B + 1 to M)

The subroutine for Algorithm 1, node perturbation algorithm, is shown in Algorithm
2. Algorithm 2 improves model performance by dynamic adjustment. As a component of
DPART, it introduces randomness by perturbing prediction values at the terminal nodes of
trees, evaluating the fit of the perturbed trees, and retaining the best-performing trees. This
dynamic adjustment allows the model to adapt and improve over successive iterations,
resulting in more accurate predictions. By leveraging perturbation and additive approaches,
DPART aims to enhance the performance of tree-based models for the LDV dataset.

Algorithm 2: Node perturbation procedure of DPART.

1. Function PerT( f̂ m−1
t , Xtrain, ri)

2. Input : Previous tree f̂ m−1
t , Xtrain, residuals ri

3. Output : Best perturbed tree Tbest
4. for j = 1 to J do
5. Tj = f̂ m−1

t
6. // Randomly perturb one terminal node
7. k = RandomUni f orm(nodes)
8. p = RandomUni f orm(−β, β)
9. Tj[k, yval] = Tj [k, yval]× (1 + p)
10. // Evaluate the fit of the perturbed tree
11. r̂i = Predict(Tj, Xtrain)

12. current f it = sum((ri − r̂i)
2for i = 1 to n)

13. if current f it < best f it then
14. best f it = current f it
15. Tbest = T j
16. end if
17. end for
18. return Tbest
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The process in Algorithm 2 begins with function PerT(), which modifies the prediction
at node k to introduce variability into the tree’s structure. The inputs are the previous
iteration’s tree, training data, and residuals. The function outputs the best perturbed tree.
In each iteration of j = 1, . . ., J, where J denotes the number of tree variations considered,
the algorithm creates a copy of the previous tree. A terminal node k is randomly selected
from the tree, and its prediction value is perturbed by a random factor p, which is randomly
chosen from a specified range (−β, β).

After perturbing the tree, the algorithm evaluates its fit to the residuals on the training
data and computes the sum of the squared differences between the actual and predicted
residuals (RSS). This RSS score is used to compare the fit among J perturbed trees. If the
current perturbed tree shows a better fit, indicated by a lower RSS = ∑n

i=1 (r i − r̂i)
2, then

the current tree becomes the new best tree Tbest, and the best fit is updated accordingly.
Algorithm 2 allows flexible configuration of perturbation parameters in several ways.

The number of nodes selected for perturbation can be varied based on the desired level of
exploration, and the value of J can be adjusted to control how many perturbed versions of
the trees are considered.

Depending on the specified perturbation probability value P, a fresh new tree can be fit to
the current residual instead of being perturbed by the previous tree to better explore the global
value. In this paper, the fresh new tree is created by function NewT(Xtrain, ri) using ‘rpart’
package in R for decision trees that model the relationship between the training data (Xtrain)
and the residuals (ri) [30]. By adjusting the perturbation probability, we can balance local and
global optimization, enhancing the model’s ability to improve predictive performance.

DPART enhances the performance by dynamically refining the tree structure pertur-
bation. This approach progressively improves the model, leading to more accurate and
robust predictions. The dynamic process ensures that the model continuously adapts and
improves through successive iterations.

3.3. Evaluation Metrics

The performance of the models is assessed using two common metrics: root mean
squared error (RMSE) and coefficient of determination (R2).

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (3)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

Better model performance is indicated by lower RMSE and higher R2 values. RMSE
reflects the mean difference between the observed and predicted values.

To evaluate model consistency, Monte Carlo cross-validation (MCCV) is used to
access the metrics’ uncertainty with 50 sets of random train–test splits (70:30 ratio). The
standard deviation (SD) of the metrics across these split sets indicates the uncertainty of the
model’s performance. Low SD values suggest consistent performance, while high SD values
indicate variability.

4. Result Analysis and Discussion

This section details the results obtained from the tree-based prediction models and dis-
cusses practical implications of the models. The computational requirements for this study
were modest. The models are run with generally brief execution times on a workstation
with an Intel Xeon Silver 4210 CPU operating at 2.20 GHz and 96.0 GB of RAM.
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4.1. Results from Decision Tree Models

Decision trees provide straightforward, interpretable models for predicting CO2 emis-
sions by breaking down complex relationships into simple, step-by-step decision rules.
Decision trees can show the factors affecting CO2 emissions and assist in making informed
decisions regarding emission control.

The decision tree in Figure 3 shows a systematic approach to predicting CO2 emissions
based on key features, including engine sizes and gear steps. The tree consists of six internal
and seven terminal nodes. Each terminal node represents a final predicted CO2 emission
level. Each node in the decision tree shows the predicted value for CO2 emissions, along
with the percentage of the observations that fall in that node. In Figure 3, the root node
displays a value of 254, representing the average CO2 emissions across all observations
in the dataset. This node includes all (100%) data points before any splits occur. At the
root, the model splits the data based on whether the engine size is less than 2.6 or not. The
left branch, representing smaller engines (less than 2.6 L), covers 44% of the data and is
further divided by additional splits, such as engine sizes below 1.9 and gear counts under
three. The right branch with engines larger than 2.6 (56% of the data) shows further splits
at engine sizes of 3.9 and 6.5, which narrows down the predictions to smaller subgroups of
the data.
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In the results from the regression tree model, the engine size variable is the most
significant factor in determining CO2 emissions. Vehicles with smaller engines release
lower emissions compared to those with larger engines. For vehicles with larger engines,
the number of gears has a minimal impact on emissions. However, for vehicles with
smaller engines, the number of gears does influence emissions, with those having more
gears tending to release more CO2.

Although decision trees offer clear and straightforward models that are easy to un-
derstand and visualize, they lack the predictive power and robustness of more advanced
models. The regression tree model can produce a single tree that can vary with different
data splits and the result may be misleading. For example, in Figure 3, the cylinder count
variable does not appear because of the domination of the variable engine size and strong
variable correlation.
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4.2. Results from Dynamic Perturbation Additive Regression Trees

Dynamic perturbation additive regression trees (DPART) can significantly improve
prediction accuracy. Figure 4 shows the performance of the DPART model on both the
training and test sets over 1000 iterations. During the initial iterations, both training and
test RMSE values highly fluctuate. However, after the warm-up period (B = 500), the RMSE
values stabilize. The minimal difference between training and test RMSE indicates that
DPART effectively mitigates overfitting and achieves convergence. The configuration of
DPART in Figure 4 results in stable performance with an R2 of 0.84 and RMSE of 23.9.
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Various configurations were tested for DPART’s capability to adjust setting for iden-
tifying an efficient balance between accuracy and computational time. One effective
configuration consists of 5 trees, 30 iterations, and 15 warm-up iterations. This setup was
determined by cross-validation results from the random forest model, which used 150 trees,
aligning with 5 trees per iteration over 30 iterations. This streamlined configuration of
DPART provides results comparable to those of larger iteration settings. The running time
is reduced significantly from over 10 min in large DPART configurations to under 30 s in
the smaller configurations.

The perturbation parameters were selected to maintain model stability while introduc-
ing meaningful variations. The perturbation probability is set to 0.5, ensuring a balanced
chance of modifying the existing tree. For the PerT() function, the previous tree is perturbed
into 20 different versions by slightly adjusting the prediction value of a randomly chosen
node. A random perturbation factor was chosen, empirically ranging from −0.01 to 0.01.
To further validate the robustness of this configuration, a sensitivity analysis was con-
ducted. Different perturbation ranges ([−0.005, 0.005] and [−0.02, 0.02]) and probabilities
(0.3 and 0.7) were tested. The results indicated minimal variations in predictive accuracy
(R2 fluctuating within ±0.02) and computational efficiency, confirming that the chosen
values provide a suitable balance between model performance and stability. In this paper,
the NewT() function is implemented using the regression tree package in R.
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The variable importance obtained from the DPART model is shown in Figure 5. The
variable importance shows the impact of each predictor on the model’s output. Compared
to regression trees, ensemble tree methods like DPART improve accuracy but at a cost
of interpretability. However, some interpretability can still be accessed by computing
the frequency of each variable’s appearance across the ensemble of trees. The frequency
analysis helps us to understand the importance of each variable. The engine size and
cylinder count variables are identified as key factors in the model’s predictions.
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Figure 5. Variable importance resulting from DPART model.

4.3. Performance Comparison Among Tree-Based Models

To assess the effectiveness of different models compared to the proposed DPART
model, performance metrics were analyzed for evaluating model prediction accuracy
and consistency.

Table 2 and Figures 6 and 7 present the performance comparison between differ-
ent models in terms of RMSE and R2 values for their average and standard deviations
(SDs) across 50 different sets of train–test splits in the MCCV. The models compared are
a regression tree (RT) model, two BART models (BART–1 and –2), and a DPART model.
BART–1 is a Bayesian additive regression tree model with relatively heavier computational
requirement. BART–1 uses 200 trees, 1000 iterations, and 100 warm-up iterations [31] with
default R package settings. BART–2 requires less computation with a configuration of
5 trees, 30 iterations, and 15 warm-up iterations. DPART use the same configuration for
light computation requirement as BART–2.

As shown in Table 2 and Figures 6 and 7, DPART offers the best prediction accuracy
compared to the other models showing mixed performance. The RT model shows a mod-
erate fit with an average RMSE of 30.43 and an R2 of 0.74. BART–1 outperforms RT. On
the contrary, BART–2 performs worst. The DPART model with the same configuration as
BART–2 shows the best performance with the lowest RMSE and highest R2 values.

DPART also provides excellent prediction consistency along with high accuracy. The
variation in RMSE of different tree-based models over the MCCV splits is shown in Table 2
and Figure 6. DPART shows minimal prediction errors and consistent performance with
the lowest RMSE. The RT model shows moderate error levels with stable performance.
BART–1 has low prediction errors with high consistency. On the other hand, BART–2
shows high prediction errors and performance variability with significantly higher RMSE
and a large SD.

Table 2. Performance comparison between tree-based models.

RMSE ± SD R2 ± SD

RT 30.43 ± 0.48 0.74 ± 0.0085
BART–1 24.94 ± 0.37 0.82 ± 0.0049
BART–2 35.34 ± 4.16 0.64 ± 0.0933
DPART 24.18 ± 0.37 0.84 ± 0.0052
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The performance measure R2 shows similar characteristics to RMSE. The R2 of dif-
ferent tree-based models over the MCCV splits is shown in Table 2 and Figure 7. DPART
outperforms the other models in terms of accuracy and variability. The RT model shows
a moderate fit and consistency with a moderate R2 value. BART–1 achieves a higher R2

with a low SD, indicating better accuracy and reliability. BART–2 shows lower accuracy
and higher variability. The DPART model leads with the highest R2 value at 0.84 and lowest
SD at 0.0052, which indicate superior accuracy and consistent performance.

BART–2 consistently shows a large variation with the similar iterations and settings
to DPART. This can be attributed to its reliance on MCMC sampling that inherently in-
troduces stochasticity into the model estimation process. Despite MCMC being powerful
in exploring complex posterior distributions, BART can also introduce variability in the
results, particularly in configurations with fewer trees and iterations. With only 5 trees
and 30 iterations, BART–2 may not have enough modeling power or convergence stability.
BART–2 may struggle to consistently capture the underlying data structure. This leads to
greater sensitivity to the initial conditions and the stochastic behavior of MCMC. As a result,
the model may show higher variability across different runs and struggle to consistently
converge to an optimal solution.

In this analysis, DPART performs well on this dataset due to its design. The RT
model showed moderate performance, but it was outperformed by the more sophisticated
BART–1 and DPART models. Simpler models like decision trees are less accurate compared
to sophisticated models that can capture more intricate patterns in the data. Furthermore,
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DPART is configured with a small number of trees and fewer iterations, yet it still achieves
quite high accuracy consistently.

Table 3 shows the computational efficiency of DPART relative to other tree-based mod-
els. DPART achieves balanced performance by maintaining low computation times while
preserving model accuracy. Unlike BART–1, which requires substantial computational time
(70 s) due to its larger configuration of trees and iterations, DPART’s setup is optimized
for faster runtime without significantly compromising on predictive power. The simplest
RT model has minimal computational requirements but lacks the predictive strength of
ensemble methods like BART and DPART. BART–2 is also faster (0.5 s) but at the cost of
very low accuracy due to its minimal settings. These results demonstrate that DPART offers
an effective compromise.

Table 3. Computation time between tree-based models.

Average Computation Time (Seconds)

RT 0.1
BART–1 70
BART–2 0.5
DPART 28

The comparison between the models in this study and a previous paper [8] reveals
advancements in model performance. While the previous study reported a range of mod-
els with moderate accuracy, this paper demonstrates significant improvements. Results
show that the DPART model and BART–1 exhibit superior performance, with lower RMSE
and higher R2 values compared to the best models from [8]. The prior study shows the
limitations of linear models, which achieve RMSE values of approximately 31 g/km and
R2 values near 0.73, reflecting their inability to fully capture complex relationships in
emissions data. For example, the R2 values for the linear models are approximately 0.74 for
the full feature set and 0.72 for a more interpretable model using just two variables (gear
step and engine size). Non-linear methods, such as GAMs, demonstrated enhanced perfor-
mance by surpassing the R2 values of linear models by two to seven percentage points and
reducing RMSE values by an average of 3 g/km. These findings show the advantage of
non-linear approaches in addressing intricate patterns. However, these methods show only
incremental improvements, with GAMs achieving an R2 of around 0.77 using high-degree-
of-freedom non-linear functions and four features. These findings reflect the strengths
and limitations of traditional methods, where linear regression being valued for its sim-
plicity and interpretability, but fails to capture complex patterns that non-linear models
effectively identify.

The new models introduced in this study, particularly DPART, represent a substantial
improvement. The new models generate R2 values of approximately 0.84. This represents
a substantial increase in prediction accuracy. This improvement indicates that the new
models offer enhanced accuracy and better predictive capability, which reflects advances in
modeling techniques and effectiveness in handling the dataset.

In addition to enhanced accuracy, DPART maintains a degree of interpretability despite
the complexity typical of ensemble methods. Variable importance, computed by tracking
the frequency of each predictor’s presence across the ensemble of trees, shows that the
engine size and cylinder count as influential variables in emission predictions. This finding
aligns with previous studies using linear models and GAMs where the engine size and
cylinder count variables were also identified as primary predictors.

5. Conclusions

This study presented new modeling of CO2 emissions from LDVs by novel tree-based
methods. A new algorithm was proposed to enhance predictive performance, interpretabil-
ity, and computational efficiency in modeling the CO2 emissions in LDVs. Comparative
analysis revealed that the new models demonstrated substantial improvements in accuracy
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and reliability compared to existing models. The results also showed that the new algorithm
achieved comparable prediction accuracy with reduced computational time.

The new algorithm, DPART, achieves high prediction accuracy and consistency com-
pared to existing models. DPART employs a dynamic perturbation mechanism within
an iterative boosting framework, where each new tree is either a completely fresh model or
a perturbed version of the previous one. This novel approach allows DPART to fit either
a fresh new tree to explore global patterns or a perturbed version of the previous tree to re-
fine the current model’s performance. The iterative process of this method helps avoid local
optima while progressively improving the model’s accuracy. Unlike traditional regression
trees, which typically rely on a single static tree structure, DPART builds a collection of trees,
each contributing to a more robust and adaptable final model. This combination of global
exploration and local enhancement enables DPART to capture complex patterns in the data
while maintaining predictive consistency and avoiding overfitting. The dynamic process
allows DPART to continuously refine its predictions, exploring various tree structures to
capture complex interactions in datasets. The results demonstrate that DPART outperforms
existing models in terms of accuracy and reliability.

In addition, the proposed DPART method achieves computational efficiency, signif-
icantly reducing the time required for model training and prediction. This efficiency is
primarily driven by the iterative nature of the dynamic perturbation mechanism, which
allows for incremental improvements rather than rebuilding the entire model from scratch.
Furthermore, by fitting either fresh trees or perturbing existing ones, DPART minimizes
redundant computations and optimizes the model-building process. During perturbation,
the algorithm evaluates a set of perturbed trees and retains only the best performing ones,
further improving computational efficiency. This approach allows DPART to selectively
refine existing trees, accelerating the modeling process while maintaining high prediction
accuracy. The study results illustrate DPART’s capability to deliver rapid analysis while
maintaining accuracy.

Variable importance analysis indicates that the engine size and cylinder count are
significant predictors. These analysis results are consistent with the findings from earlier
studies utilizing linear models and GAMs. This analysis is possible because DPART
maintains a degree of interpretability alongside enhanced accuracy. Although ensemble
methods like DPART often involve reduced interpretability, the quantification of variable
importance through frequency analysis supports a clear understanding of emission factors.
This interpretability, combined with DPART’s predictive power, highlights its innovation
compared to existing models.

The results demonstrate the key contributions of this research. First, the new prediction
models in this study outperform conventional models in prediction accuracy and reliability.
Second, with computational efficiency, the new methods achieve comparable prediction
accuracy to that of conventional models. Third, the new models offer insights into the
critical factors affecting CO2 emissions. Therefore, this study can support reliable evaluation
and informed decision-making on vehicle emission reduction related to Scope 3 assessment.

Although this study introduces new models and validates their effectiveness, it has
limitations. The performance of DPART may vary with different datasets or perturbation
settings, which could affect its generalizability. Furthermore, while DPART achieves high
accuracy and computational efficiency, the interpretability of the model may be reduced as
the complexity of the ensemble increases.

This study can be extended in several ways. The performance of the new models may
be improved further. Future research could explore optimizing DPART’s key parameters,
such as random factors and tree sizes, to enhance performance and applicability across
different datasets. Future research would include systematic parameter tuning, using
techniques like grid search or Bayesian optimization, based on broader empirical results
rather than partially relying on insights from previous models. Extending DPART to handle
larger and more diverse datasets would offer a more comprehensive understanding of its
capabilities and limitations. This could be achieved by leveraging parallel computing to dis-
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tribute the computational workload and employing efficient data partitioning techniques,
such as stratified sampling or clustering, to manage dataset complexity. Adaptive hyperpa-
rameter tuning and regularization strategies could be explored to optimize performance and
prevent overfitting when dealing with heterogeneous data. Incorporating advanced feature
engineering methods, such as automated feature selection or transformations, would further
enhance DPART’s ability to capture intricate patterns across diverse datasets.
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Abbreviations

Feature names
CO2 emissions Carbon dioxide emissions (measured in grams per kilometer driven, g/km)
Cylinders Number of cylinders per engine
Engine Size Total engine displacement or cylinder volume (expressed in liters)
Fuel Type D: diesel; E: ethanol E85; X: regular gasoline; Z: premium gasoline
Gear Number of gear steps in a transmission (3–10)
Acronyms
BART Bayesian additive regression trees
DPART Dynamic perturbation additive regression trees
EPA Environmental Protection Agency
EU European Union
GAMs Generalized additive models
GHG Greenhouse gas
LDVs Light-duty vehicles
MCCV Monte Carlo cross-validation
MCMC Markov chain Monte Carlo
R2 Coefficient of determination
RMSE Root mean squared error (g/km of CO2 emissions)
RSS Residual sum of squares
RT Regression tree
SD Standard deviation
Mathematical Symbols
B Number of warm-up iterations
G Number of regions (g = 1, . . ., G)
J Number of perturbation trees (j = 1, . . ., J)
M Number of iterations (m = 1, . . ., M)
P Perturbation probability
T Number of trees (t = 1, . . ., T)
k Random terminal node
n Count of observations

https://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64
https://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64
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p Random factor
xi ith input value
yi True values
ŷi Prediction at xi (i = 1, . . ., n)
y Sample mean (= 1

n ∑n
i=1 yi)

ŷRg Average response in the gth box
yval Prediction values at the terminal nodes of trees
Tj jth perturbed version of previous tree f̂ m−1

t
Tbest Best perturbed tree
Xtrain Training set
ri Partial residual for ith observation
r̂i Predicted residuals for ith observation
f̂ m
t (x) Predicted value for CO2 emissions at x for the tth tree in the mth iteration

f̂ m(x) Collection of prediction models at x in the mth iteration
f̂ (x) Single prediction at x after B warm-up periods
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