
Vol.:(0123456789)

Optimization Letters
https://doi.org/10.1007/s11590-024-02164-3

ORIGINAL PAPER

Theoretical analysis of integer programming models
for the two‑dimensional two‑staged knapsack problem

Suho Kang1 · Junyoung Kim3 · Seulgi Joung2 · Kyungsik Lee1 

Received: 23 August 2023 / Accepted: 23 October 2024
© The Author(s) 2024

Abstract
In this study, we theoretically compare integer programming models for the two-
dimensional two-staged knapsack problem. Including the well-known level pack-
ing model, we introduce two pattern-based models called the strip packing model
and the staged pattern model derived from integer programming models for the
two-dimensional two-staged cutting stock problem. We show that the level pack-
ing model provides weaker linear programming (LP) relaxation bounds than pat-
tern-based models. Furthermore, we also present upper bounds on the LP-relaxation
bound of the level packing model, which can be obtained from the LP-relaxation
bounds of the pattern-based models.

Keywords  Two-dimensional two-staged knapsack problem · Integer programming
models · Level packing model · Strip packing model · Staged pattern model ·
LP-relaxation

 *	 Junyoung Kim
	 juntotokim@mju.ac.kr

 *	 Kyungsik Lee
	 optima@snu.ac.kr

	 Suho Kang
	 kangsuho0301@snu.ac.kr

	 Seulgi Joung
	 sgjoung@ajou.ac.kr

1	 Department of Industrial Engineering, Seoul National University, 1 Gwanak‑ro, Gwanak‑gu,
Seoul 08826, Republic of Korea

2	 Department of Industrial Engineering, Ajou University, 206 Worldcup‑ro, Yeongtong‑gu,
Suwon 16499, Republic of Korea

3	 Department of Business Administration, Myongji University, 34 Geobukgol‑ro, Seodaemun‑gu,
Seoul 03674, Republic of Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-024-02164-3&domain=pdf
http://orcid.org/0000-0002-4543-2312

	 S. Kang et al.

1  Introduction

The two-dimensional two-staged knapsack problem (2DK in short) produces a set of
small rectangular items by cutting a large rectangular plate. Formally, we are given
a large rectangular plate S with height H and width W, and a list of m types of small
rectangular items to be cut from S. An item of type i ( i = 1,… ,m ) has a height
hi ≤ H , a width wi ≤ W , a profit pi , and an upper bound (demand) di which denotes
the maximum number of items of type i allowed to be cut. Furthermore, we do not
allow rotations of items. The objective is to maximize the total profit obtained from
the set of cut items. This problem is closely related to the two-dimensional two-
staged cutting stock problem (2DCS in short) [4]. The 2DCS minimizes the number
of plates required to cut the full demand of items, unlike the 2DK.

The 2DK is a variant of the two-dimensional knapsack problem [5], which con-
ventionally assumes that the items have to be cut in the orthogonal style: the vertical
and horizontal sides of each item must be parallel to the vertical and horizontal sides
of the large plate, respectively. In many practical application, additional constraints
are imposed to the 2DK. We consider one of the common additional constraints,
which is that the cuts should be guillotine type, i.e., each cut must divide the plate
into two rectangles. Each item in the 2DK is obtainable from two-stage guillotine
cuts, where the first- and second-stage cuts are orthogonal. Without loss of general-
ity, we assume that vertical cuts are made after all horizontal cuts are carried out. If
vertical cuts should be made first, we swap the widths and heights of the plate and
items in the given problem instance. In addition, if the direction of the first-stage
cuts is free, we can solve the 2DK by solving two 2DKs in which the direction of
the first-stage cuts is fixed vertically and horizontally, respectively. Especially, we
refer to the separated sub-plates produced after the first-stage cutting as the strips or
levels. In general, 2DK and 2DCS are used to represent the unstaged problem. How-
ever, we use these abbreviations for the sake of simplicity when referring to the two-
staged problems. For the unstaged guillotine cutting problem and the corresponding
models, we refer the readers to Russo et al. [16], Iori et al. [11], Becker et al. [3].

A simple example of a two-staged guillotine cutting for five items is illustrated
in Fig. 1. Both Fig. 1a and b are two-dimensional orthogonal cuttings. However,

Fig. 1   An example of two-staged two-dimensional guillotine cutting

Theoretical analysis of integer programming models for the…

only Fig. 1b is a feasible two-staged two-dimensional guillotine cutting. The first-
and second-stage cuts are illustrated as dashed and dotted lines, respectively. Addi-
tionally, we consider the inexact case of the 2DK, that is, one can require trimming
unnecessary areas after the second stage of guillotine cuts, such as the shaded area
in Fig. 1b above the item (2).

The 2DK is presented as the pricing problem of the Dantzig-Wolfe decomposi-
tion approach for the 2DCS introduced by Gilmore and Gomory [7]. Therefore, the
studies on the 2DK may provide crucial clues to solving the 2DCS and their real-
world applications. For this reason, the 2DK has received considerable attention,
and several studies have proposed solution approaches for the problem. Gilmore
and Gomory [7] considered a special case of the 2DK where demands of items are
not given, which is called the unconstrained 2DK [8]. Using a dynamic program-
ming approach, the authors devised a pseudo-polynomial time exact algorithm for
the unconstrained 2DK. Based on this result, Hifi [8] extended the algorithm for
the unconstrained 2DK allowing the rotation of items. Unlike the unconstrained
case, the 2DK is referred to as “constrained” when the demands are considered. The
following section will provide the formal definition of the constrained and uncon-
strained 2DK. For the constrained 2DK, Hifi and Roucairol [10] proposed an exact
solution approach based on the branch-and-bound algorithm utilizing the bounds
computed by dynamic programming techniques. Lodi and Monaci [13] proposed an
integer programming model for the constrained 2DK, which can be solved using the
standard branch-and-bound algorithm. The authors introduced potential strips (lev-
els) that can be packed into the plate, where each height corresponds to the height of
a specific item. The proposed integer programming model, which we call the level
packing model, determines the usage of each potential level while packing items into
each level. The level packing model considers items with the same shape as distinct
ones with unit demands. The authors also proposed a variant of the level packing
model, which treats items with the same shape as one item with demand larger than
1. The authors proved that the LP-relaxation bounds of the level packing model and
its variant are equivalent. In our paper, we only consider the level packing model,
not the variant. Subsequently, the authors derived another integer programming
model for the constrained 2DK based on the concept of “width patterns” proposed
by Gilmore and Gomory [7], each of which represents a set of item widths that can
be cut from the large plate along the horizontal side. We refer to this pattern-based
model for the constrained 2DK as the strip packing model. Belov and Scheithauer
[4] proposed a branch-and-cut-and-price algorithm using Chvátal-Gomory and
Gomory mixed-integer cuts for the strip packing model. Heuristic algorithms for the
2DK have also been devised as part of efficient solution approaches for the 2DCS;
see Hifi and Roucairol [10], Hifi and M’Hallah [9], and Alvarez-Valdes et al. [2].

On the other hand, various integer programming models for the 2DCS have also
been devised in the literature. Macedo et al. [14] extended to the 2DCS the arc-flow
formulation, proposed by Valério de Carvalho [19] for the one-dimensional cut-
ting stock problem. Mrad et al. [15] utilized the “height patterns”, each of which
represents a set of item heights that can be cut from the large plate along the verti-
cal side. Subsequently, the authors proposed another pattern-based model for the
2DCS, which utilizes both width and height patterns. Moreover, Silva et al. [17]

	 S. Kang et al.

proposed an extension to the 2DCS of the one-cut model, as originally proposed
by Dyckhoff [6] for the one-dimensional cutting stock problem. The relationship
between these models for the 2DCS has also been well-established. Kwon et al.
[12] analyzed the theoretical hierarchy between the bounds provided by the linear
programming (LP) relaxations of these models, along with comprehensive compu-
tational comparisons.

The studies on the 2DCS can be adapted to the 2DK due to their relevance. In
particular, the integer programming models for the 2DCS can be utilized to formu-
late the 2DK and develop efficient solution approaches. However, despite the exten-
sive studies on models for the 2DCS, to the best of our knowledge, only the level
packing model (with its variant) and the strip packing model were proposed for the
constrained 2DK in Lodi and Monaci [13]. Furthermore, although Lodi and Monaci
[13] performed computational comparisons of the bounds obtained from the LP-
relaxations of the level packing model and the strip packing model, the theoretical
comparison between them has hardly been addressed.

In this study, we discuss three integer programming models for the constrained
2DK: an extension of the level packing model, the strip packing model, and another
pattern-based model adapted from the model for the 2DCS proposed by Mrad et al.
[15]. Subsequently, we conduct a theoretical comparison of the LP-relaxations of
these models. Our contributions can be summarized as follows:

•	 We modify the level packing model of Lodi and Monaci [13] by adding a set of
valid inequalities, which enhance the LP-relaxation bound.

•	 By utilizing the 2DCS model introduced by Mrad et al. [15], we present another
pattern-based model for the constrained 2DK, which we refer to as the staged
pattern model.

•	 We establish a theoretical relationship among the LP-relaxation bounds of the
three models under consideration: the modified level packing model, the strip
packing model inherited from Gilmore and Gomory [7], and the staged pattern
model adapted from Mrad et al. [15]. Our analysis shows that the pattern-based
models, i.e., the strip packing model and the staged pattern model, yield tighter
LP-relaxation bounds compared to the level packing model. Moreover, we derive
upper bounds on the level packing model by utilizing the LP-relaxation bounds
of the pattern-based models. We also provide a concrete example illustrating the
tightness of these upper bounds.

The remainder of this paper is organized as follows. In Sect. 2, we provide a formal
definition of the 2DK, and introduce the integer programming models under con-
sideration for the problem. These models are compared theoretically with respect
to the bounds obtained from their LP-relaxations in Sect. 3. A tight example for
the comparison is also given in Sect. 3. Finally, concluding remarks are given in
Sect. 4.

Theoretical analysis of integer programming models for the…

2 � Integer programming models for the 2DK

This section presents three integer programming models for the 2DK: the level packing
model, the strip packing model, and the staged pattern model. Before starting, we pro-
vide some formal definitions concerned with the 2DK.

An instance of the 2DK can be defined with input (m,H,W, h,w, d, p) where
h = (h1,… , hm), w = (w1,… ,wm), d = (d1,… , dm) and p = (p1,… , pm) . With-
out loss of generality, we assume that all the values in the tuples are integers and
h1 ≥ h2 ≥ ⋯ ≥ hm . Furthermore, when di > ⌊H∕hi⌋⌊W∕wi⌋ for some i ∈ M where
M = {1,… ,m} , we treat the demand as di = ⌊H∕hi⌋⌊W∕wi⌋ by taking the geometric
limit into consideration. The 2DK is called constrained when di < ⌊H∕hi⌋⌊W∕wi⌋ for
some i ∈ M . On the contrary, if di = ⌊H∕hi⌋⌊W∕wi⌋ for all i ∈ M , we call the 2DK
unconstrained. We mainly focus on the constrained 2DK in this study, however, the
results remain valid for the unconstrained 2DK.

As described in Sect. 1, the two-staged guillotine cuttings are applied to a given
large plate in the 2DK. The first-stage cutting produces strips that are sub-plates sepa-
rated from the given plate. Each strip is separated into items by the second-stage cut-
ting, with trimming if needed. Among the items separated from each strip, the item
with the largest height is referred to as a strip defining item. Of course, the height of
each strip is equivalent to that of the strip defining item.

Using these definitions, we first formally describe the level packing model proposed
by Lodi and Monaci [13] in the following discussion. Subsequently, we enhance the
level packing model by introducing its valid inequalities. Additionally, two pattern-
based models are discussed, the strip packing model that uses only width patterns and
the staged pattern model that uses also height patterns.

2.1 � Level packing model

A given 2DK instance (m,H,W, h,w, d, p) can be equivalently transformed into
another one by regarding di items of the type i as di distinct item types with a unit
demand for each i ∈ M . Let N = {1,… , n} be the set of item types of the transformed
instance, where n =

∑m

i=1
di . We define �j = min{i ∈ M ∶

∑i

k=1
dk ≥ j} for each

j ∈ N , which indicates the item type of the original instance corresponding to the type
j ∈ N of the transformed instance. Let h̄j = h𝛽j , w̄j = w𝛽j

 , and p̄j = p𝛽j for each j ∈ N .
Then, an optimal solution of the 2DK instance (m,H,W, h,w, d, p) can be obtained by
solving (n,H,W, h̄, w̄,1, p̄) where h̄ = (h̄1,… , h̄n) , w̄ = (w̄1, … , w̄n) and
p̄ = (p̄1,… , p̄n).

In the transformed 2DK instances, Lodi and Monaci [13] defined n potential strips
that have distinct strip defining items characterized by their types, from which the items
can be cut. Using the concept of the potential strips, Lodi and Monaci [13] proposed
the level packing model (LM) for the 2DK, which is described as follows:

(1)LM∶ maximize

n
∑

k=1

n
∑

j=k

p̄jxjk

	 S. Kang et al.

A decision variable xjk , for each j ∈ N and k ∈ N , represents whether the item of
type j is to be cut from the potential strip defined by the item of type k. Specifi-
cally, in the transformed 2DK instance with the definition of the potential strips, the
variable xkk for each k ∈ N can represent the use of the potential strip defined by the
item of type k. Constraints (5) ensure that each potential strips is defined by the item
of type k for each k ∈ N . Constraints (2) describe the demand limits. Constraints (3)
represent that the total width in each potential strip cannot exceed W. Constraint (4)
restricts the total height of the used potential strips to H.

Observe that, from constraints (3), each xjk can be positive only if xkk = 1 .
Hence, the following inequalities

are valid for the feasible solution set of LM. By adding these inequalities to LM, we
propose a modified level packing model (ML) described as follows:

It is clear that the LP-relaxation bound provided by ML is at least as tight as the
LP-relaxation bound obtained from LM. Moreover, constraints (7) make it easier to
compare the LP-relaxations between ML and the pattern-based models presented in
the following section.

2.2 � Pattern‑based models

As mentioned in Sect. 1, the 2DK can be formulated utilizing width and height
patterns. Formally, a width pattern can be represented as a vector a ∈ Pw where

(2)subject to

j
∑

k=1

xjk ≤ 1, ∀j ∈ N,

(3)
n
∑

j=k+1

w̄jxjk ≤ (W − w̄k)xkk, ∀k ∈ N,

(4)
n
∑

k=1

h̄kxkk ≤ H,

(5)xjk = 0, ∀k ∈ N, ∀j ∈ {1,… , k − 1},

(6)xjk ∈ {0, 1}, ∀j ∈ N, ∀k ∈ N

(7)xjk ≤ xkk, ∀k ∈ N, ∀j ∈ {k + 1,… , n}

ML∶ maximize (1)

subject to (2) − (7).

Theoretical analysis of integer programming models for the…

Each width pattern can define a strip for the 2DK. Then, each component of a width
pattern represents the number of each item type in the strip corresponding to the
width pattern. We note that the set of width patterns, Pw , is finite and discrete. For a
procedure to generate all patterns, we refer to Suliman [18]. Let aq = (a

q

1
,… , a

q
m) be

an element of Pw for each q ∈ Qw , where Qw = {1,… , |Pw|} . We also define �(q) as
the minimum index in the support of aq for each q ∈ Qw , where the support denotes
the set of indexes with positive components of aq . We note that the support of aq is
not empty for each q ∈ Qw since aq ≠ 0 . Here, �(q) means the strip defining item for
the width pattern aq for each q ∈ Qw . Let Qi

w
= {q ∈ Qw ∶ �(q) = i} for each i ∈ M .

Then, Qw can be partitioned into Qi
w
’s, that is, Qw = ∪i∈MQ

i
w
 and Qi

w
∩ Q

j
w = � for all

i, j ∈ M such that i ≠ j.
A height pattern can also be represented as a vector b ∈ Ph where

We refer to each height pattern in Ph as br = (br
1
,… , br

m
) for each r ∈ Qh where

Qh = {1,… , |Ph|} . Unlike width patterns, the demand limits are neglected in the
definition of height patterns, that is, height patterns are unconstrained. These height
patterns are used later to describe the staged pattern model together with width pat-
terns. In the staged pattern model, the demand limits can be expressed using only
the variables associated with width patterns. Therefore, the demand limits are not
necessary in the definition of height patterns.

Figure 2 illustrates how these patterns represent a solution for the 2DK. In
this example, the large plate is divided into two strips and one waste fragment
(the shaded strip) by two first-stage cuts (dashed lines). Subsequently, the sec-
ond-stage cuts (dotted lines) divide each strip into items with trimming. The
set of items produced from each strip by the second-stage cuts corresponds to a
width pattern. In other words, a width pattern can represent second-stage cuts.
Now, let us consider the strip defining items for the strips. The set of these items

Pw =

{

a ∈ ℤ
m
+
⧵ {0} ∶

∑

i∈M

wiai ≤ W; ai ≤ di, ∀i ∈ M

}

.

Ph =

{

b ∈ ℤ
m
+
⧵ {0} ∶

∑

i∈M

hibi ≤ H

}

.

Fig. 2   An illustration of a height pattern and width patterns

	 S. Kang et al.

corresponds to a height pattern, that is, a height pattern can represent first-stage
cuts.

Now, we introduce two pattern-based models for the 2DK. The strip packing
model (PM) proposed by Lodi and Monaci [13] utilizes only the width patterns, and
it can be formulated as follows:

For each q ∈ Qw , a decision variable xq represents the number of used strips cor-
responding to the width pattern aq . Constraints (9) describe the demand limits, and
constraint (10) states that the total height of the strips corresponding to the used
width patterns cannot exceed H.

An alternative pattern-based model using both width and height patterns can be
derived from the 2DCS model introduced in Mrad et al. [15]. We refer to this model
as the staged pattern model (SM) for 2DK, which is formulated as follows:

Here, the decision variables xq , the objective function (8), and constraints (9) are the
same as those in the strip packing model. However, the staged pattern model utilizes
height patterns to limit the total height of the used strips, unlike the strip packing
model. A binary decision variable yr for each r ∈ Qh represents whether or not the
height pattern br is used. Due to constraint (13), at most one height pattern can be
chosen. For all i ∈ M , constraints (12) restrict the number of used strips defined by
item i to being less than or equal to the number of strips defined by the same item

(8)PM∶ maximize
∑

q∈Qw

∑

i∈M

pia
q

i
xq

(9)subject to
∑

q∈Qw

a
q

i
xq ≤ di, ∀i ∈ M,

(10)
∑

i∈M

∑

q∈Qi
w

hixq ≤ H,

(11)xq ∈ ℤ+, ∀q ∈ Qw.

SM∶ maximize (8)

subject to (9), (11),

(12)
∑

r∈Qh

br
i
yr ≥

∑

q∈Qi
w

xq, ∀i ∈ M,

(13)
∑

r∈Qh

yr ≤ 1,

yr ∈ {0, 1}, ∀r ∈ Qh.

Theoretical analysis of integer programming models for the…

which is allowed by the chosen height pattern. By constraints (12), (13), and the
definition of a height pattern, the total height of used strips is restricted to H.

Note that, when we use SM to solve the 2DK, we may consider only maximal
height patterns where a height pattern br is called maximal if there exists no height
pattern br

′

 such that br
k
< br

′

k
 for some k ∈ M . In SM, replacing Qh with the set of

indices of maximal height patterns can be beneficial in computational aspects since
the number of variables can be reduced, while the LP relaxation bound does not
change. However, for simplicity in the discussion, we consider all height patterns
throughout this paper because we mainly focus on the comparison of the LP relaxa-
tion bounds of the discussed models. Also note that even if we change the inequali-
ties in constraints (12) to equalities, the resulting model, which we call SM= , is a
valid formulation of the 2DK. However, SM= has two drawbacks compared to SM.
Firstly, height patterns which are not maximal can not be excluded from SM= to sat-
isfy constraints (12) at equalities. Secondly, the LP-relaxation bound of SM= is not
stronger than that of SM (see the proof of Proposition 9 in Appendix A). Therefore,
it is not advantageous to use SM= over SM.

The modified level packing model (ML) and the two pattern-based models (PM,
SM) differ significantly in term of the definition of variables and the model size such
as the number of variables and constraints. Specifically, PM and SM have exponen-
tially many variables, whereas the number of variables of ML is pseudo-polynomial
in the input size. In particular, SM has more variables than PM since the former
utilizes both width and height patterns. Accordingly, these three models may yield
different LP-relaxation bounds, and the computation times to obtain the bounds may
vary significantly depending on the models. It is important to deal with the trade-
off between the tightness of the LP-relaxation bound and the computation time in
practice. Nonetheless, as mentioned in Sect. 1, this paper mainly focuses on the LP-
relaxation bounds provided by these models. For the readers interested in the com-
putational aspects of the LP-relaxations of these three models, brief computational
test results are reported in Appendix B.

In the subsequent discussion, we compare the LP-relaxation bounds of the pre-
sented models: the modified level packing model (ML), the strip packing model
(PM), and the staged pattern model (SM). Lodi and Monaci (2003) only compu-
tationally compared the bounds of LM and PM, while we theoretically analyze the
LP-relaxation bounds of the presented three models along with brief computational
results.

3 � Comparison of integer programming models

For a given 2DK instance, let z∗ be the optimal objective value and zmodel
LP

 be the LP-
relaxation bound of the corresponding model for the 2DK. We also define Pmodel as
the feasible solution set of the LP-relaxation of the model. For example, for the LP-
relaxation of PM, zPM

LP
 and PPM are the optimal objective value and feasible solution

set, respectively.
Using these notations, we first compare the pattern-based models.

	 S. Kang et al.

Proposition 1  z∗ ≤ zSM
LP

≤ zPM
LP

.

Proof  It is clear that z∗ ≤ zSM
LP

 and z∗ ≤ zPM
LP

 . Therefore, we only show that zSM
LP

≤ zPM
LP

 .
Let (xSM, ySM) ∈ PSM be an optimal solution of the LP-relaxation of SM. By con-
straints (12), (13), and the definition of Ph , the following inequalities

hold. This result implies that xSM ∈ PPM because xSM satisfies constraints (9) and
(10) due to its definition and the above inequalities. Therefore, zSM

LP
 is less than or

equal to zPM
LP

 . 	� ◻

We present a 2DK instance where zSM
LP

< zPM
LP

 in Example 3.
Now, we compare the modified level packing model and pattern-based models. For

ease of the analysis, we introduce an extended version of PM where the width pattern
set is defined for the instance (n,H,W, h̄, w̄,1, p̄) , as follows:

An element of P̄w is denoted as ās for each s ∈ Sw where Sw = {1,… , |P̄w|} .
Let 𝜃̄(s) denote the minimum index in the support of ās for each s ∈ Sw , and
S
j
w = {s ∈ Sw ∶ 𝜃̄(s) = j} for each j ∈ N . Then, in the similar manner with Qw , Sw

can be partitioned into Sjw’s.

Example 1  Let us consider an instance (2, 3, 3, h,w, d, p) where h = (2, 1) , w = (2, 1) ,
d = (1, 2) , and p = (4, 1) . The width pattern set for this instance, Pw , is defined as
follows:

This instance can be equivalently transformed into (3, 3, 3, h̄, w̄,1, p̄) with
h̄ = (2, 1, 1) , w̄ = (2, 1, 1) , and p̄ = (4, 1, 1) . Then, P̄w is defined as follows:

Using P̄w , the extended version of PM, denoted as PE, is defined as follows:

H ≥ max
r∈Qh

∑

i∈M

hib
r
i
≥

∑

r∈Qh

ySM
r

(

∑

i∈M

hib
r
i

)

≥
∑

i∈M

hi

∑

r∈Qh

br
i
ySM
r

≥
∑

i∈M

hi

∑

q∈Qi
w

xSM
q

P̄w =

{

ā ∈ {0, 1}n ⧵ {0} ∶
∑

j∈N

w̄jāj ≤ W

}

.

Pw = {(1, 0), (1, 1), (0, 1), (0, 2)}.

P̄w = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 0), (0, 0, 1), (0, 1, 1)}.

PE∶ maximize
∑

s∈Sw

∑

j∈N

p̄jā
s
j
xs

Theoretical analysis of integer programming models for the…

We note that both PE and ML formulate the same instance (n,H,W, h̄, w̄,1, p̄) which
is transformed from the original one, whereas PM and SM formulate the original
one. The following proposition shows the relationship between ML and PE.

Proposition 2  zPE
LP

≤ zML
LP

.

Proof  Let xPE ∈ PPE be an optimal solution for the LP-relaxation of PE, whose
objective value is zPE

LP
 . We show that a feasible solution for the LP-relaxation of ML

can be constructed from xPE , which yields the same objective value.
We define xML ∈ [0, 1]n×n as

while xML
jk

= 0 , otherwise. Then, by constraints (14), we can see that, for each j ∈ N

,

where the last equality holds since ās
j
= 0 for each s ∈ Sk

w
 such that k ∈ {j + 1,… , n} .

This result implies that xML satisfies constraints (2) and (6). Furthermore, for each
k ∈ N , we have

where the last inequality holds due to the definition of P̄w and the last equality holds
because ās

k
= 1 for each s ∈ Sk

w
 . Therefore, xML satisfies constraints (3). Also, xML

satisfies constraint (4) because

(14)subject to
∑

s∈Sw

ās
j
xs ≤ 1, ∀j ∈ N,

(15)
∑

j∈N

∑

s∈S
j
w

h̄jxs ≤ H,

xs ∈ {0, 1}, ∀s ∈ Sw.

xML
jk

=
∑

s∈Sk
w

ās
j
xPE
s
, ∀j ∈ {k,… , n}, ∀k ∈ N,

j
∑

k=1

xML
jk

=

j
∑

k=1

∑

s∈Sk
w

ās
j
xPE
s

=
∑

s∈Sw

ās
j
xPE
s

≤ 1,

n
�

j=k

w̄jx
ML
jk

=

n
�

j=k

w̄j

⎛

⎜

⎜

⎝

�

s∈Sk
w

ās
j
xPE
s

⎞

⎟

⎟

⎠

=
�

s∈Sk
w

�

n
�

j=k

w̄jā
s
j

�

xPE
s

≤ W
�

s∈Sk
w

xPE
s

= WxML
kk

,

n
∑

k=1

h̄kx
ML
kk

=
∑

k∈N

∑

s∈Sk
w

h̄kx
PE
s

≤ H,

	 S. Kang et al.

by constraint (15). Finally, we have

for each k ∈ N and j ∈ {k,… , n} , so that even last constraints (7) hold. Therefore,
xML ∈ PML.

On the other hand, the objective value corresponding to xML is equivalent to zPE
LP

because

where the last equality holds since

by the definition of Sk
w
 . Therefore, zPE

LP
≤ zML

LP
 . 	� ◻

We note that a 2DK instance where zPE
LP

< zML
LP

 is presented in Example 3.
On the other hand, each element of P̄w can be matched to an element of Pw

through an onto function f ∶ P̄w → Pw defined as

where Ni = {j ∈ N ∶ �j = i} for each i ∈ M . We note that |Ni| = di.For instance,
in Example 1, f (1, 1, 0) = f (1, 0, 1) = (1, 1) . Let Sw(q) = {s ∈ Sw ∶ f (ās) = aq} for
each q ∈ Qw . Then, Sw can also be partitioned into Sw(q)’s, that is, Sw = ∪q∈Qw

Sw(q)
and Sw(q1) ∩ Sw(q2) = � for any q1, q2 ∈ Qw such that q1 ≠ q2 . Additionally, it can
be easily shown that

from the definition of Sw(q)’s, where C(�1, �2) = �1!∕(�2!(�1 − �2)!) for some �1 ∈ ℤ+
and �2 ∈ ℤ+ such that �1 ≥ �2 . It means the number of combinations of �1 items
taken �2 at a time.

Based on these observations, we show that PE provides a bridge to compare the
LP-relaxation bounds between ML and PM.

Proposition 3  zPM
LP

= zPE
LP

.

Proof  Let xPM ∈ PPM be an optimal solution of the LP-relaxation of PM, which
yields the objective value zPM

LP
 . We first show that zPE

LP
≥ zPM

LP
 by constructing a

xML
jk

=
∑

s∈Sk
w

ās
j
xPE
s

≤
∑

s∈Sk
w

xPE
s

= xML
kk

n
�

k=1

n
�

j=k

p̄jx
ML
jk

=

n
�

k=1

n
�

j=k

p̄j

⎛

⎜

⎜

⎝

�

s∈Sk
w

ās
j
xPE
s

⎞

⎟

⎟

⎠

=

n
�

k=1

�

s∈Sk
w

n
�

j=k

p̄jā
s
j
xPE
s

=
�

s∈Sw

�

j∈N

p̄jā
s
j
xPE
s
,

ās
j
= 0, ∀k ∈ N, ∀j ∈ {1,… , k − 1}, ∀s ∈ Sk

w

f (ā)i =
∑

j∈Ni

āj, ∀i ∈ M,

(16)|Sw(q)| =
∏

i∈M

C(di, a
q

i
), ∀q ∈ Qw,

Theoretical analysis of integer programming models for the…

feasible solution of the LP-relaxation of PE from xPM , which yields the same objec-
tive value.

Let us define xPE ∈ [0, 1]|Sw| as xPE
s

= xPM
q

∕|Sw(q)| for each q ∈ Qw and s ∈ Sw(q) .
For any fixed q ∈ Qw and i belonging to the support of aq , the following inequality
holds by constraints (9):

Furthermore, for such q and i, we have the following inequalities from equality (16):

where the last inequality holds since di ≥ a
q

i
 . Inequalities (17) and (18) imply that

xPE
s

∈ [0, 1] for each q ∈ Qw and s ∈ Sw(q) because

Now, we show that xPE satisfies constraints (14) and (15). Let us consider constraint
(14) corresponding to some j ∈ N , and let j ∈ Ni for some i ∈ M . The left hand-side
of this constraint for xPE can be represented as follows:

Here, for any fixed q ∈ Qw ,
∑

s∈Sw(q)
ās
j
 is equivalent to the number of elements s in

Sw(q) where ās
j
= 1 . We can see that the number of such elements is equal to the size

of Sw(q�) in a modified instance with a reduced demand of the item type i to di − 1
for some i ∈ M such that j ∈ Ni , where q′ is the index of the width pattern such that
a
q�

i
= a

q

i
− 1 and aq

�

k
= a

q

k
 for each k ∈ M⧵{i} . Therefore,

∑

s∈Sw(q)
ās
j
 can be com-

puted as follows:

This result implies that xPE satisfies constraints (14) because, for each i ∈ M and
j ∈ Ni,

(17)xPM
q

≤
di

a
q

i

.

(18)|Sw(q)| ≥ C(di, a
q

i
) =

di × (di − 1) ×⋯ × (di − a
q

i
+ 1)

a
q

i
× (a

q

i
− 1) ×⋯ × 1

≥
di

a
q

i

,

xPE
s

=
xPM
q

|Sw(q)|
≤

di

a
q

i

⋅

a
q

i

di
= 1.

∑

s∈Sw

ās
j
xPE
s

=
∑

q∈Qw

∑

s∈Sw(q)

ās
j
xPE
s

=
∑

q∈Qw

xPM
q

|Sw(q)|

∑

s∈Sw(q)

ās
j
.

∑

s∈Sw(q)

ās
j
= |{s ∈ Sw(q) ∶ ās

j
= 1}|

= C(di − 1, a
q

i
− 1)

∏

l∈M⧵{i}

C(dl, a
q

l
) =

a
q

i

di
|Sw(q)|.

∑

s∈Sw

ās
j
xPE
s

=
∑

q∈Qw

xPM
q

|Sw(q)|

∑

s∈Sw(q)

ās
j
=

∑

q∈Qw

a
q

i

di
xPM
q

≤ 1,

	 S. Kang et al.

where the last inequality holds due to constraints (9). Let us consider now constraint
(15). From the definition of Sjw ’s and Sw(q)’s, it can be easily shown that

By utilizing this relationship, we can see that

 where the last inequality holds due to constraint (10). On the other hand, xPE yields
the same objective value as zPM

LP
 . By the definition of Sw(q)’s, the following equalities

hold:

Then, the objective value corresponding to xPE can be represented as

where the last equality implicitly uses a step from xPE
s

 to xPM
q

 as the last step in (19).
The last term of (20) is equivalent to zPM

LP
 . This result implies that zPM

LP
≤ zPE

LP
.

Finally, we show that zPE
LP

≤ zPM
LP

 . Let xPE be a given optimal solution of the LP-
relaxation of PE, which yields the objective value zPE

LP
 . We define xPM ∈ ℝ

|Qw|

+ as
xPM
q

=
∑

s∈Sw(q)
xPE
s

 for each q ∈ Qw . Then, xPM satisfies constraints (9) because, for
any i ∈ M,

where the last inequality is derived by the summation of constraints (14) corre-
sponding to j ∈ Ni and by the size of Ni itself. Additionally, xPM satisfies constraint
(10) due to the equalities in (19) to be followed in reverse order, and constraint (15)
that assures the validity of H as an upper bound. Also, xPM yields the same objec-
tive value with xPE because of the equalities of (20) that can be developed in reverse
order. These results imply that xPM ∈ PPM and zPE

LP
≤ zPM

LP
 . Therefore, the result fol-

lows. 	� ◻

⋃

q∈Qi
w

Sw(q) =
⋃

j∈Ni

Sj
w
, ∀i ∈ M.

(19)

∑

j∈N

∑

s∈S
j
w

h̄jx
PE
s

=
∑

i∈M

∑

j∈Ni

∑

s∈S
j
w

h̄jx
PE
s

=
∑

i∈M

∑

q∈Qi
w

hi

(

∑

s∈Sw(q)

xPE
s

)

=
∑

i∈M

∑

q∈Qi
w

hix
PM
q

≤ H,

∑

i∈M

pia
q

i
=
∑

j∈N

p̄jā
s
j
, ∀q ∈ Qw, ∀s ∈ Sw(q).

(20)
∑

q∈Qw

∑

s∈Sw(q)

∑

j∈N

p̄jā
s
j
xPE
s

=
∑

q∈Qw

∑

s∈Sw(q)

∑

i∈M

pia
q

i
xPE
s

=
∑

q∈Qw

∑

i∈M

pia
q

i
xPM
q

,

∑

q∈Qw

a
q

i
xPM
q

=
∑

q∈Qw

∑

s∈Sw(q)

a
q

i
xPE
s

=
∑

q∈Qw

∑

s∈Sw(q)

∑

j∈Ni

ās
j
xPE
s

=
∑

j∈Ni

∑

s∈Sw

ās
j
xPE
s

≤ di,

Theoretical analysis of integer programming models for the…

With Propositions 1 and 2, Proposition 3 states that the pattern-based models, PM
and SM, provide tighter LP-relaxation bounds compared to ML and LM. In other
words, zPM

LP
 and zSM

LP
 are lower bounds on zML

LP
 and zLM

LP
 . In the subsequent discussion,

we also provide upper bounds on zML
LP

 using zPM
LP

 and zSM
LP

.
Let us introduce sub-structures of PML , which have useful properties to derive

upper bounds on zML
LP

 . For each k ∈ N , let us define a polytope Rk ⊆ ℝ
n
+
 , where its

generic element is denoted as xk = (x1k,… , xnk) , as follows:

We note that constraints in Rk correspond to constraints (3), (5), and (7) in ML for
each k ∈ N . For any xML ∈ PML ⊆ ℝ

n×n
+

 , let xML
k

= (xML
1k

,… , xML
nk

) for each k ∈ N .
By definition, it is clear that xML

k
∈ Rk for any fixed k ∈ N . Therefore, xML

k
 can be

represented as a convex combination of the extreme points of Rk . Let
vi
k
= (vi

1k
,… , vi

nk
) for all i ∈ Vk be the all non-zero extreme points of Rk , where Vk

denotes the index set of them. Of course, vi
jk
= 0 for each j ∈ {1,… , k − 1} . Then,

xML
k

 can be represented as xML
k

=
∑

i∈Vk
�ivi

k
 for some �i ∈ [0, 1] for each i ∈ Vk such

that
∑

i∈Vk
�i ≤ 1 , since the zero extreme point is not considered.

Proposition 4  For each k ∈ N and i ∈ Vk , vik has at most one fractional component,
while vi

kk
= 1 and vi

jk
= 0 for each j ∈ {1,… , k − 1}.

Proof  For any fixed k ∈ N , let x̂k ∈ Rk be a non-zero extreme point of Rk . Since
x̂k ∈ Rk , x̂jk = 0 for each j ∈ {1,… , k − 1} . We only consider the case when x̂kk > 0
since x̂k = 0 if x̂kk = 0 by the definition of Rk . Suppose that 0 < x̂kk < 1 . It can be
easily shown that x̂k∕x̂kk ∈ Rk . This result implies that x̂k with 0 < x̂kk < 1 cannot
be an extreme point of Rk because such x̂k is represented as a convex combination
of 0 and x̂k∕x̂kk . Finally, assume that x̂kk = 1 , and let R′

k
 be a facet of Rk , defined as

Rk ∩ {xk ∈ [0, 1]n ∶ xkk = 1} . It is clear that x̂k is an extreme point of Rk if and only
if x̂k is an extreme point of R′

k
 by the definition of a facet. On the other hand, R′

k
 can

be expressed as follows:

Here, constraints xjk ≤ xkk for j ∈ {k + 1,… , n} are dropped since they are redun-
dant to the bound constraints xjk ≤ 1 for j ∈ {k + 1,… , n} . We can see that R′

k
 is

Rk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xk ∈ [0, 1]n ∶

n
�

j=k+1

w̄jxjk ≤ (W − w̄k)xkk,

xjk ≤ xkk, ∀j ∈ {k + 1,… , n},

xjk = 0, ∀j ∈ {1,… , k − 1}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

R
�
k
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xk ∈ [0, 1]n ∶

n
�

j=k+1

w̄jxjk ≤ W − w̄k,

xkk = 1,

xjk = 0, ∀j ∈ {1,… , k − 1}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

	 S. Kang et al.

represented as the LP-relaxation of the feasible solution set of a binary knapsack
problem, where an extreme point has at most one fractional component. Accord-
ingly, an extreme point of R′

k
 has at most one fractional component among xjk ’s

where j ∈ {k + 1,… , n} , and x̂k does so. Therefore, the result follows. 	� ◻

Let ⌊vi
k
⌋ = (⌊vi

1k
⌋,… , ⌊vi

nk
⌋) and ⌈vi

k
⌉ = (⌈vi

1k
⌉,… , ⌈vi

nk
⌉) for each i ∈ Vk and

k ∈ N . Then, ⌊vi
k
⌋ ≠ 0 and ⌊vi

k
⌋ corresponds to a width pattern ās of P̄w for some

s ∈ Sk
w
 by Proposition 4 and the definition of Rk . On the other hand, let u(k) ∈ Sw

be the index of a width pattern in P̄w , represented as a unit vector with āu(k)
k

= 1
for each k ∈ N . It is clear that u(k) ∈ Sk

w
 for each k ∈ N . Then, for any fixed k ∈ N

and i ∈ Vk , ⌈vik⌉ − ⌊vi
k
⌋ represents a zero vector or a unit vector corresponding to a

width pattern āu(l) of P̄w for some l ∈ {k + 1,… , n} since vi
kk
= 1 and vi

jk
= 0 for

each j ∈ {1,… , k − 1} by Proposition 4. Therefore, u(l) ∉ Sk
w
 for each l > k . From

this relationship between vi
k
 ’s and width patterns, we present the upper bound on

zML
LP

 using zPE
LP

 in the following proposition.

Proposition 5  zML
LP

≤ 2zPE
LP
.

Proof  Let xML ∈ PML be an optimal solution for the LP-relaxation of ML, where the
corresponding objective value is zML

LP
 . We show that a feasible solution for the LP-

relaxation of PE can be constructed from xML , where the corresponding objective
value is greater than or equal to (1∕2)zML

LP
.

Recall that, for any fixed k ∈ N , xML
k

= (xML
1k

,… , xML
nk

) can be represented with
the extreme points of Rk . Let xML

k
=
∑

i∈Vk
�i
k
vi
k
 for some �i

k
∈ [0, 1] for each i ∈ Vk

such that
∑

i∈Vk
�i
k
≤ 1 . We note that vi

k
 for each i ∈ Vk can be rewritten as

where f i
k
=
∑

j∈N(v
i
jk
− ⌊vi

jk
⌋) , because vi

k
− ⌊vi

k
⌋ can have at most one non-zero com-

ponent by Proposition 4.
For each k ∈ N , Vk can be partitioned into VD

k
 and VU

k
 where

and

By definition, VD
k

 contains at least all the indexes for which vi
k
 is an integral vector,

therefore VU
k

 is empty if all the extreme points are integer. We note that VU
k

 can be
also empty even if some extreme points contain a fractional component.

(21)vi
k
= ⌊vi

k
⌋ + vi

k
− ⌊vi

k
⌋ = ⌊vi

k
⌋ + f i

k
(⌈vi

k
⌉ − ⌊vi

k
⌋)

VD
k
=

�

i ∈ Vk ∶
�

j∈N

p̄j⌊v
i
jk
⌋ ≥

�

j∈N

p̄jf
i
k
(⌈vi

jk
⌉ − ⌊vi

jk
⌋)

�

,

VU
k
=

�

i ∈ Vk ∶
�

j∈N

p̄j⌊v
i
jk
⌋ <

�

j∈N

p̄jf
i
k
(⌈vi

jk
⌉ − ⌊vi

jk
⌋)

�

.

Theoretical analysis of integer programming models for the…

For any two real-valued n-dimensional vectors �1,�2 where �i = (�i
1
,… ,�i

n
) for

i = 1, 2 , let us denote �1 ≥ �
2 if �1

j
≥ �2

j
 for all j = 1,… , n . Using this notation, we

have the following inequalities for each k ∈ N:

where the last inequality holds by the equality (21).
As mentioned earlier, for each k ∈ N , ⌊vi

k
⌋ for each i ∈ Vk corresponds to a width

pattern ās of P̄w for some s ∈ Sk
w
 . In addition, ⌈vi

k
⌉ − ⌊vi

k
⌋ for each i ∈ VU

k
 corresponds

to āu(l) for some l ∈ {k + 1,… , n} because ⌈vi
k
⌉ − ⌊vi

k
⌋ ≠ 0 by the definition of VU

k
 .

Based on these observations, we further partition VD
k

 and VU
k

.
Let us define Dk(s) = {i ∈ VD

k
∶ ās = ⌊vi

k
⌋} for each s ∈ Sk

w
 , and let

Uk(l) = {i ∈ VU
k
∶ āu(l) = ⌈vi

k
⌉ − ⌊vi

k
⌋} for each l ∈ {k + 1,… , n} . It is clear

that VD
k

 and VU
k

 are partitioned into Dk(s) ’s and Uk(l)’s, respectively. We note
that Dk(s) ’s and Uk(l) ’s may contain more than one element. For example,
when n = 5 and k = 1 , suppose that a width pattern ās = (1, 1, 0, 0, 0) is given
for some s ∈ S1

w
 with four vectors, v

i1
1
= (1, 1, 0.5, 0, 0) , v

i2
1
= (1, 1, 0, 0.5, 0) ,

v
i3
1
= (1, 0, 1, 0.5, 0) , and vi4

1
= (1, 0, 0, 0.5, 1) , where i1, i2 ∈ VD

1
 and i3, i4 ∈ VU

1
 .

Then, i1, i2 ∈ D1(s) for such s since ās = (1, 1, 0, 0, 0) = ⌊v
i1
1
⌋ = ⌊v

i2
1
⌋ . Additionally,

āu(4) = (0, 0, 0, 1, 0) = ⌈v
i3
1
⌉ − ⌊v

i3
1
⌋ = ⌈v

i4
1
⌉ − ⌊v

i4
1
⌋ , that is, i3, i4 ∈ U1(4).

We then define �s
k
=
∑

i∈Dk(s)
�i
k
 for each s ∈ Sk

w
 and �l

k
=
∑

i∈Uk(l)
�i
k
f i
k
 for

each l ∈ {k + 1,… , n} . If Dk(s) = � for some s ∈ Sk
w
 or Uk(l) = � for some

l ∈ {k + 1,… , n} , we set �s
k
 or �l

k
 to 0. Then, we can see that

where the second equality holds since vi
kk
= 1 for each i ∈ Vk by Proposition 4 and

the second inequality holds since f i
k
< 1 for each i ∈ Vk . In addition, the following

result can be derived from the inequality (22):

(22)xML
k

=
�

i∈VD
k

�i
k
vi
k
+

�

i∈VU
k

�i
k
vi
k
≥

�

i∈VD
k

�i
k
⌊vi

k
⌋ +

�

i∈VU
k

�i
k
f i
k
(⌈vi

k
⌉ − ⌊vi

k
⌋),

(23)

1 ≥ xML
kk

=
∑

i∈Vk

�i
k
vi
kk
=

∑

i∈Vk

�i
k
=

∑

i∈VD
k

�i
k
+

∑

i∈VU
k

�i
k

≥
∑

s∈Sk
w

∑

i∈Dk(s)

�i
k
+

n
∑

l=k+1

∑

i∈Uk(l)

�i
k
f i
k
=

∑

s∈Sk
w

�s
k
+

n
∑

l=k+1

�l
k
,

xML
k

≥
�

i∈VD
k

𝜆i
k
⌊vi

k
⌋ +

�

i∈VU
k

𝜆i
k
f i
k
(⌈vi

k
⌉ − ⌊vi

k
⌋)

=
�

s∈Sk
w

�

i∈Dk(s)

𝜆i
k
ās +

n
�

l=k+1

�

i∈Uk(l)

𝜆i
k
f i
k
āu(l)

=
�

s∈Sk
w

𝜇s
k
ās +

n
�

l=k+1

𝜋l
k
āu(l)

	 S. Kang et al.

where the first equality holds since ⌊vi
k
⌋ = ās for each s ∈ Sk

w
 and i ∈ Dk(s) , while

⌈vi
k
⌉ − ⌊vi

k
⌋ = āu(l) for each l ∈ {k + 1,… , n} and i ∈ Uk(l) . Then, we can see that

for each j ∈ {k + 1,… , n} because āu(l)
j

= 1 if and only if l = j.

Now, let us define xPE ∈ ℝ
|Sw|

+ as

for each k ∈ N and s ∈ Sk
w
 . Here, the second term in case s = u(k) is a sum of �k

�
 ’s for

� ∈ {1,… , k − 1} , where �k
�
 is not zero if and only if āu(k) corresponds to ⌈vi

�
⌉ − ⌊vi

�
⌋

for some i ∈ VU
�

 . We show that xPE ∈ PPE . Firstly, the left hand-side of constraints
(14) in PE for some j ∈ N can be rewritten with xPE as follows:

Here, the first equality holds since ās
j
= 0 for each k ∈ {j + 1,… , n} and s ∈ Sk

w
 ,

while the third equality holds since āu(k)
j

= 1 if and only if k = j , where āu(j)
j

= 1 also
supports the last equality. Then, from inequalities (23) and (24), we can obtain the
following result:

where the last inequality holds due to constraint (2). Here, we note that
xML
jj

≥
∑

s∈S
j
w
ās
j
𝜇s
j
 holds by the inequality (23) since ās

j
= 1 when s ∈ S

j
w . Therefore,

xPE satisfies constraints (14) in PE. In addition, this result implies that xPE
s

≤ 1 for

(24)xML
jk

≥
∑

s∈Sk
w

𝜇s
k
ās
j
+

n
∑

l=k+1

𝜋l
k
ā
u(l)

j
=

∑

s∈Sk
w
⧵{u(k)}

𝜇s
k
ās
j
+ 𝜋

j

k

xPE
s

=

⎧

⎪

⎨

⎪

⎩

�s
k
, if s ∈ Sk

w
⧵ {u(k)}

�
u(k)

k
+

k−1
�

�=1

�k
�
, if s = u(k)

�

s∈Sw

ās
j
xPE
s

=

j
�

k=1

�

s∈Sk
w

ās
j
xPE
s

=

j
�

k=1

⎛

⎜

⎜

⎝

�

s∈Sk
w
⧵{u(k)}

ās
j
𝜇s
k
+ ā

u(k)

j
xPE
u(k)

⎞

⎟

⎟

⎠

=

j
�

k=1

�

s∈Sk
w
⧵{u(k)}

ās
j
𝜇s
k
+ ā

u(j)

j
xPE
u(j)

=

j
�

k=1

�

s∈Sk
w
⧵{u(k)}

ās
j
𝜇s
k
+ 𝜇

u(j)

j
+

j−1
�

𝜏=1

𝜋j
𝜏

=

j−1
�

k=1

⎛

⎜

⎜

⎝

�

s∈Sk
w
⧵{u(k)}

ās
j
𝜇s
k
+ 𝜋

j

k

⎞

⎟

⎟

⎠

+
�

s∈S
j
w

ās
j
𝜇s
j
.

�

s∈Sw

ās
j
xPE
s

=

j−1
�

k=1

⎛

⎜

⎜

⎝

�

s∈Sk
w
⧵{u(k)}

ās
j
𝜇s
k
+ 𝜋

j

k

⎞

⎟

⎟

⎠

+
�

s∈S
j
w

ās
j
𝜇s
j
≤

j−1
�

k=1

xML
jk

+ xML
jj

≤ 1,

Theoretical analysis of integer programming models for the…

each s ∈ Sw . Next, from the left hand-side of constraint (15) with xPE , we can derive
the following inequalities:

where the inequality holds since h̄k ≤ h̄l for each l ∈ {1,… , k − 1} . Then, xPE satis-
fies constraint (15) by the inequality (23), because

where the last inequality holds due to constraint (4). Therefore, xPE ∈ PPE.
We now consider the objective value corresponding to xPE , denoted as ẑ . Let

p̄s =
∑

j∈N p̄jā
s
j
 for each s ∈ Sw . Then, ẑ can be represented as follows:

Here, p̄s =
∑

j∈N p̄j⌊v
i
jk
⌋ for each k ∈ N , s ∈ Sk

w
 , and i ∈ Dk(s) by the definition of

Dk(s) . In addition, p̄u(l) =
∑

j∈N p̄j(⌈v
i
jk
⌉ − ⌊vi

jk
⌋) for each k ∈ N , l ∈ {k + 1,… , n} ,

and i ∈ Uk(l) by the definition of Uk(l) . Accordingly, following equalities hold:

n
�

k=1

�

s∈Sk
w

h̄kx
PE
s

=

n
�

k=1

⎛

⎜

⎜

⎝

�

s∈Sk
w

h̄k𝜇
s
k
+

k−1
�

𝜏=1

h̄k𝜋
k
𝜏

⎞

⎟

⎟

⎠

≤

n
�

k=1

⎛

⎜

⎜

⎝

�

s∈Sk
w

h̄k𝜇
s
k
+

k−1
�

𝜏=1

h̄𝜏𝜋
k
𝜏

⎞

⎟

⎟

⎠

=

n
�

k=1

h̄k

⎛

⎜

⎜

⎝

�

s∈Sk
w

𝜇s
k
+

n
�

l=k+1

𝜋l
k

⎞

⎟

⎟

⎠

,

n
�

k=1

�

s∈Sk
w

h̄kx
PE
s

≤

n
�

k=1

h̄k

⎛

⎜

⎜

⎝

�

s∈Sk
w

𝜇s
k
+

n
�

l=k+1

𝜋l
k

⎞

⎟

⎟

⎠

≤

n
�

k=1

h̄kx
ML
kk

≤ H,

ẑ =

n
�

k=1

�

s∈Sk
w

p̄sxPE
s

=

n
�

k=1

⎛

⎜

⎜

⎝

�

s∈Sk
w
⧵{u(k)}

p̄s𝜇s
k
+ p̄u(k)

�

𝜇
u(k)

k
+

k−1
�

𝜏=1

𝜋k
𝜏

�

⎞

⎟

⎟

⎠

=

n
�

k=1

⎛

⎜

⎜

⎝

�

s∈Sk
w

p̄s𝜇s
k
+ p̄u(k)

k−1
�

𝜏=1

𝜋k
𝜏

⎞

⎟

⎟

⎠

=

n
�

k=1

⎛

⎜

⎜

⎝

�

s∈Sk
w

p̄s𝜇s
k
+

n
�

l=k+1

p̄u(l)𝜋l
k

⎞

⎟

⎟

⎠

=

n
�

k=1

⎛

⎜

⎜

⎝

�

s∈Sk
w

�

i∈Dk(s)

p̄s𝜆i
k
+

n
�

l=k+1

�

i∈Uk(l)

p̄u(l)𝜆i
k
f i
k

⎞

⎟

⎟

⎠

.

ẑ =

n
�

k=1

⎛

⎜

⎜

⎝

�

s∈Sk
w

�

i∈Dk(s)

�

j∈N

p̄j⌊v
i
jk
⌋𝜆i

k
+

n
�

l=k+1

�

i∈Uk(l)

�

j∈N

p̄j(⌈v
i
jk
⌉ − ⌊vi

jk
⌋)𝜆i

k
f i
k

⎞

⎟

⎟

⎠

=

n
�

k=1

⎛

⎜

⎜

⎝

�

i∈VD
k

�

j∈N

p̄j⌊v
i
jk
⌋𝜆i

k
+

�

i∈VU
k

�

j∈N

p̄j(⌈v
i
jk
⌉ − ⌊vi

jk
⌋)𝜆i

k
f i
k

⎞

⎟

⎟

⎠

=

n
�

k=1

�

i∈Vk

𝜆i
k
max

�

�

j∈N

p̄j⌊v
i
jk
⌋,
�

j∈N

p̄jf
i
k
(⌈vi

jk
⌉ − ⌊vi

jk
⌋)

�

,

	 S. Kang et al.

where the last equality holds by the definition of VD
k

 and VU
k

 for each k ∈ N . On the
other hand, zML

LP
 can be expressed as

where the last equality comes from (21). Therefore, it is clear that zML
LP

≤ 2ẑ . This
result implies that zML

LP
≤ 2zPE

LP
 since ẑ ≤ zPE

LP
 . 	� ◻

Propositions 3 and 5 imply that, even though ML provides the weaker LP-relaxation
bound compared to PM, the bound is tighter than twice the LP-relaxation bound of PM.
We also show a similar result between PM and SM.

For ease of analysis, we introduce another model for the 2DK. Let us define R0 as
follows:

We remark that h̄j is the height of the strip corresponding to the width pattern ās for
each j ∈ N and s ∈ S

j
w . Since R0 definition has only one constraint equivalent to

constraint (15) in PE, PPE ⊆ R0 . Accordingly, any xPE ∈ PPE can be represented as
a convex combination of the extreme points of R0.

Let P̄h = R0 ∩ {0, 1}|Sw| ⧵ {0} . We denote each element of P̄h as b̄t ∈ {0, 1}|Sw| for
each t ∈ Sh where Sh = {1,… , |P̄h|} . Then, each b̄t represents the usage of width pat-
terns in P̄w such that the total height is less than or equal to H. Each element of P̄h can
be matched to some element of Ph through function g ∶ P̄h → Ph defined as

We note that g is an onto function because both P̄h and Ph do not care about demand
constraints. Subsequently, we define Sh(r) = {t ∈ Sh ∶ g(b̄

t
) = br} for each r ∈ Qh .

We note that Sh = ∪r∈Qh
Sh(r).

By utilizing P̄h and b̄t, t ∈ Sh , PE can be reformulated as follows, which we call PR:

zML
LP

=

n
�

k=1

n
�

j=k

p̄jx
ML
jk

=

n
�

k=1

�

j∈N

�

i∈Vk

p̄j𝜆
i
k
vi
jk

=

n
�

k=1

�

i∈Vk

𝜆i
k

�

j∈N

p̄j

�

⌊vi
jk
⌋ + f i

k
(⌈vi

jk
⌉ − ⌊vi

jk
⌋)
�

,

R0 =

⎧

⎪

⎨

⎪

⎩

x ∈ [0, 1]�Sw� ∶
�

j∈N

�

s∈S
j
w

h̄jxs ≤ H

⎫

⎪

⎬

⎪

⎭

.

g(b̄
t
)i =

∑

q∈Qi
w

∑

s∈Sw(q)

b̄t
s
, ∀i ∈ M.

PR∶ maximize
∑

s∈Sw

∑

j∈N

∑

t∈Sh

p̄jā
s
j
b̄t
s
xt

(25)subject to
∑

s∈Sw

∑

t∈Sh

ās
j
b̄t
s
xt ≤ 1, ∀j ∈ N,

Theoretical analysis of integer programming models for the…

Here, the variable xt for each t ∈ Sh represents whether to use width patterns used
in b̄t or not. Note that constraint (26) means that only one b̄t can be chosen, and so
xs =

∑

t∈Sh
b̄t
s
xt which explains how PR is derived from PE for which constraint (15)

is automatically satisfied due to the definitions of R0 and P̄h . We obtain the follow-
ing result from the relationship between Ph and P̄h.

Proposition 6  zPR
LP

≤ zSM
LP

.

Proof  Let xPR ∈ PPR be an optimal solution of PR, where the corresponding objec-
tive value is zPR

LP
 . We show that a feasible solution for the LP-relaxation of SM can be

constructed from xPR , which yields the same objective value with zPR
LP

.
Let us define (xSM, ySM) ∈ ℝ

|Qw|×|Qh| as

and

Then, ySM satisfies constraint (13) because

where the last inequality holds due to constraint (26). This result also implies that
ySM
r

≤ 1 for each r ∈ Qh . Next, we show that xSM satisfies constraints (9). For each
i ∈ M , the following inequality

can be obtained by aggregating constraints (25) corresponding to j ∈ Ni . Then, we
can see that

(26)
∑

t∈Sh

xt ≤ 1,

xt ∈ {0, 1}, ∀t ∈ Sh.

xSM
q

=
∑

s∈Sw(q)

∑

t∈Sh

b̄t
s
xPR
t
, ∀q ∈ Qw,

ySM
r

=
∑

t∈Sh(r)

xPR
t
, ∀r ∈ Qh.

∑

r∈Qh

ySM
r

=
∑

r∈Qh

∑

t∈Sh(r)

xPR
t

=
∑

t∈Sh

xPR
t

≤ 1,

(27)
∑

j∈Ni

∑

s∈Sw

∑

t∈Sh

ās
j
b̄t
s
xPR
t

≤ di

∑

q∈Qw

a
q

i
xSM
q

=
∑

q∈Qw

∑

s∈Sw(q)

∑

t∈Sh

a
q

i
b̄t
s
xPR
t

=
∑

q∈Qw

∑

s∈Sw(q)

∑

t∈Sh

(

∑

j∈Ni

ās
j

)

b̄t
s
xPR
t

=
∑

j∈Ni

∑

s∈Sw

∑

t∈Sh

ās
j
b̄t
s
xPR
t

≤ di,

	 S. Kang et al.

where the last inequality holds due to (27). This result implies that constraints (9)
are satisfied by xSM . Lastly, (xSM, ySM) also satisfies constraints (12) because, for
each i ∈ M,

by the definition of xSM and ySM , as well as of Sh(r) that allows replacing br
i
 by g(b̄t)i

in the second equality. Therefore, (xSM, ySM) ∈ PSM.
Now, we show that the objective value corresponding to (xSM, ySM) is equivalent

to zPR
LP

 . By the definition of Sw(q) , the following equalities hold:

Using these equalities and the definition of xSM , the objective value corresponding
to (xSM, ySM) can be represented as

where the last term is equivalent to zPR
LP

 . This result implies that zPR
LP

≤ zSM
LP

 . 	� ◻

We note that there exists a 2DK instance where zPR
LP

< zSM
LP

 , as shown in Appendix
C. Although PR provides a tighter LP relaxation bound than SM, PR has excessively
many variables by the definition of b̄t’s, even far more than SM. In addition, some
of b̄t ’s themselves represent feasible solutions for the 2DK. This implies that, even
though the column generation approach can be applied to solve the LP relaxation of
PR, the subproblems may be as difficult as solving the 2DK directly. Therefore, it is
not recommended to utilize PR in practice.

Now, let vi
0
∈ [0, 1]|Sw| for all i ∈ V0 be the non-zero extreme points of R0 ,

where V0 denotes the index set of them and vi
0 s

 for each s ∈ Sw denotes each ele-
ment of vi

0
 . We note that R0 is represented as the LP-relaxation of the feasible

solution set of a binary knapsack problem. Hence, in analogy with extreme points
of R′

k
 from the proof of Proposition 4, each vi

0
 has at most one fractional compo-

nent. Additionally, each vi
0
 has at least one component whose value is 1 since

h̄j ≤ H for each j ∈ N . Let ⌊vi
0
⌋ = (⌊vi

01
⌋,… , ⌊vi

0 �Sh�
⌋) and

⌈vi
0
⌉ = (⌈vi

01
⌉,… , ⌈vi

0 �Sh�
⌉) for each i ∈ V0 . Then, each ⌊vi

0
⌋ is non-zero and corre-

�

r∈Qh

br
i
ySM
r

=
�

r∈Qh

�

t∈Sh(r)

br
i
xPR
t

=
�

r∈Qh

�

t∈Sh(r)

⎛

⎜

⎜

⎝

�

q∈Qi
w

�

s∈Sw(q)

b̄t
s

⎞

⎟

⎟

⎠

xPR
t

=
�

t∈Sh

�

q∈Qi
w

�

s∈Sw(q)

b̄t
s
xPR
t

=
�

q∈Qi
w

xSM
q

pia
q

i
=
∑

j∈Ni

p̄jā
s
j
, ∀i ∈ M, ∀q ∈ Qw, ∀s ∈ Sw(q).

∑

q∈Qw

∑

i∈M

pia
q

i
xSM
q

=
∑

q∈Qw

∑

i∈M

pia
q

i

(

∑

s∈Sw(q)

∑

t∈Sh

b̄t
s
xPR
t

)

=
∑

q∈Qw

∑

s∈Sw(q)

∑

t∈Sh

∑

i∈M

∑

j∈Ni

p̄jā
s
j
b̄t
s
xPR
t

=
∑

s∈Sw

∑

t∈Sh

∑

j∈N

p̄jā
s
j
b̄t
s
xPR
t
,

Theoretical analysis of integer programming models for the…

sponds to b̄t of P̄h for some t ∈ Sh by the definition of R0 . On the other hand, each
⌈vi

0
⌉ − ⌊vi

0
⌋ represents a zero vector or unit vector since vi

0
 has at most one frac-

tional component. Accordingly, if ⌈vi
0
⌉ − ⌊vi

0
⌋ is a unit vector for some i ∈ V0 , then

⌈vi
0
⌉ − ⌊vi

0
⌋ also corresponds to b̄t of P̄h for some t ∈ Sh . Based on this relationship

between vi
0
 ’s and b̄t ’s with Proposition 6, we obtain an upper bound on zPE

LP
 using

zSM
LP

.

Proposition 7  zPE
LP

≤ 2zPR
LP

.

Proof  Let xPE ∈ PPE be an optimal solution for the LP-relaxation of PE, whose
objective value is zPE

LP
 . In the similar manner with the proof of Proposition 5, we

construct a feasible solution for the LP-relaxation of PR from xPE , where the cor-
responding objective value is greater than or equal to (1∕2)zPE

LP
.

Since PPE ⊆ R0 , xPE can be represented as

for some �i
0
∈ [0, 1] for each i ∈ V0 such that

∑

i∈V0
�i
0
≤ 1 . The second equal-

ity holds since vi
0
 for each i ∈ V0 has at most one fractional component, where

f i
0
=
∑

s∈Sw
(vi

0 s
− ⌊vi

0 s
⌋) for each i ∈ V0 . We note that f i

0
< 1 for each i ∈ V0.

We partition V0 into VD
0

 and VU
0

 where

and

Then, ⌈vi
0
⌉ − ⌊vi

0
⌋ for each i ∈ VU

0
 corresponds to b̄t for some t ∈ Sh , where b̄t rep-

resents a unit vector, since ⌈vi
0
⌉ − ⌊vi

0
⌋ ≠ 0 by the definition of VU

0
 . Also, ⌊vi

0
⌋ for

each i ∈ VD
0

 corresponds to b̄t for some t ∈ Sh as mentioned earlier. Let us define
D0(t) = {i ∈ VD

0
∶ ⌊vi

0
⌋ = b̄

t
} and U0(t) = {i ∈ VU

0
∶ ⌈vi

0
⌉ − ⌊vi

0
⌋ = b̄

t
} for each

t ∈ Sh . Then, it is clear that VD
0

 and VU
0

 are partitioned into D0(t) ’s and U0(t)’s,
respectively.

Now, we define xPR ∈ ℝ
|Sh|

+ as, for each t ∈ Sh,

where xPR
t

= 0 if D0(t) = � and U0(t) = � . We first show that xPR ∈ PPR . From the
definition of xPR , the following inequalities

(28)xPE =
�

i∈V0

�i
0
vi
0
=

�

i∈V0

�i
0

�

⌊vi
0
⌋ + f i

0
(⌈vi

0
⌉ − ⌊vi

0
⌋)
�

,

VD
0
=

�

i ∈ V0 ∶
�

s∈Sw

�

j∈N

p̄jā
s
j
⌊vi

0s
⌋ ≥

�

s∈Sw

�

j∈N

p̄jā
s
j
f i
0
(⌈vi

0s
⌉ − ⌊vi

0s
⌋)

�

,

VU
0
=

�

i ∈ V0 ∶
�

s∈Sw

�

j∈N

p̄jā
s
j
⌊vi

0s
⌋ <

�

s∈Sw

�

j∈N

p̄jā
s
j
f i
0
(⌈vi

0s
⌉ − ⌊vi

0s
⌋)

�

.

xPR
t

=
∑

i∈D0(t)

�i
0
+

∑

i∈U0(t)

�i
0
f i
0
,

	 S. Kang et al.

hold. We note that the first inequality, which is valid because f i
0
< 1 , becomes

equality when U0(t) = � for all t ∈ Sh . This result implies that xPR ∈ [0, 1]|Sh| and
xPR satisfies constraint (26). On the other hand, recall that, for each t ∈ Sh , ⌊vi0⌋ = b̄

t
for each i ∈ D0(t) and ⌈vi

0
⌉ − ⌊vi

0
⌋ = b̄

t for each i ∈ U0(t) . From this relationship
between b̄t ’s and vi

0
’s, we have the following inequalities for each s ∈ Sw:

where the last inequality holds since vi
0
= ⌊vi

0
⌋ + f i

0
(⌈vi

0
⌉ − ⌊vi

0
⌋) for each i ∈ V0 .

Then, xPR satisfies constraints (25) because, for each j ∈ N,

where the first inequality holds by (29) and the last inequality holds due to con-
straints (14). Therefore, xPR ∈ PPR.

The objective value corresponding to xPR can be represented as

∑

t∈Sh

xPR
t

=
∑

t∈Sh

(

∑

i∈D0(t)

�i
0
+

∑

i∈U0(t)

�i
0
f i
0

)

≤
∑

t∈Sh

∑

i∈D0(t)

�i
0
+
∑

t∈Sh

∑

i∈U0(t)

�i
0

=
∑

i∈VD
0

�i
0
+

∑

i∈VU
0

�i
0
=

∑

i∈V0

�i
0
≤ 1

(29)

�

t∈Sh

b̄t
s
xPR
t

=
�

t∈Sh

�

�

i∈D0(t)

𝜆i
0
b̄t
s
+

�

i∈U0(t)

𝜆i
0
f i
0
b̄t
s

�

=
�

t∈Sh

�

i∈D0(t)

𝜆i
0
⌊vi

0s
⌋ +

�

t∈Sh

�

i∈U0(t)

𝜆i
0
f i
0
(⌈vi

0s
⌉ − ⌊vi

0s
⌋)

=
�

i∈VD
0

𝜆i
0
⌊vi

0s
⌋ +

�

i∈VU
0

𝜆i
0
f i
0
(⌈vi

0s
⌉ − ⌊vi

0s
⌋)

≤
�

i∈VD
0

𝜆i
0
vi
0s
+

�

i∈VU
0

𝜆i
0
vi
0s
=

�

i∈V0

𝜆i
0
vi
0s
,

∑

s∈Sw

∑

t∈Sh

ās
j
b̄t
s
xPR
t

=
∑

s∈Sw

ās
j

∑

t∈Sh

b̄t
s
xPR
t

≤
∑

s∈Sw

ās
j

∑

i∈V0

𝜆i
0
vi
0s
=

∑

s∈Sw

ās
j
xPE
s

≤ 1,

�

s∈Sw

�

j∈N

�

t∈Sh

p̄jā
s
j
b̄t
s
xPR
t

=
�

s∈Sw

�

j∈N

p̄jā
s
j

�

t∈Sh

b̄t
s
xPR
t

=
�

i∈VD
0

𝜆i
0

�

�

s∈Sw

�

j∈N

p̄jā
s
j
⌊vi

0s
⌋

�

+
�

i∈VU
0

𝜆i
0

�

�

s∈Sw

�

j∈N

p̄jā
s
j
f i
0
(⌈vi

0s
⌉ − ⌊vi

0s
⌋)

�

=
�

i∈V0

𝜆i
0
max

�

�

s∈Sw

�

j∈N

p̄jā
s
j
⌊vi

0s
⌋,
�

s∈Sw

�

j∈N

p̄jā
s
j
f i
0
(⌈vi

0s
⌉ − ⌊vi

0s
⌋)

�

,

Theoretical analysis of integer programming models for the…

where the second equality holds due to the equalities in (29). Here, the third equality
holds due to the definition of VD

0
 and VU

0
 . On the other hand, zPE

LP
 can be represented

as

where the last equality holds due to the equalities (28). Therefore, the objective
value corresponding to xPR is greater than or equal to (1∕2)zPE

LP
 . This result implies

that zPE
LP

≤ 2zPR
LP

 . 	� ◻

Because zPM
LP

= zPE
LP

 and zPR
LP

≤ zSM
LP

 by Propositions 3 and 6, respectively, Proposi-
tion 7 implies that zPM

LP
≤ 2zSM

LP
 . Our findings throughout this paper can be summa-

rized as the following theorem.

Theorem 8  z∗ ≤ zSM
LP

≤ zPM
LP

≤ zML
LP

≤ 2zPM
LP

≤ 4zSM
LP

.

Proof  Propositions 2, 3, and 5 imply that zPM
LP

≤ zML
LP

≤ 2zPM
LP

 . Furthermore, by Prop-
ositions 3, 6 and 7, we have

Therefore, with Proposition 1, the result follows. 	� ◻

We now introduce a tight example for the relationship zSM
LP

≤ zPM
LP

≤ zML
LP

.

Example 2  The large plate has a (width, height) pair of (1, 2) and there is only one
item with (width, height)=(1, 1), which has a unit profit and unit demand. We note
that this 2DK instance is constrained by definition. Recall that z∗ is the optimal
objective value of this 2DK instance. It is clear that z∗ = 1 since this item can be cut
from this plate. Let us consider ML for this example. By definition, ML has only one
variable x11 ∈ [0, 1] . Let xML

11
= 1 . It is trivial that xML

11
 is an optimal solution for the

LP-relaxation of ML. Accordingly, zML
11

= 1 . From Propositions 1 and 5, we can see
that

for this instance, that is, zSM
LP

= zPM
LP

= zML
LP

 . This instance is also a strict example for
the relationship zML

LP
≤ 2zPM

LP
≤ 4zSM

LP
.

Additionally, we present an asymptotically tight example for the relationship
zML
LP

≤ 2zPM
LP

≤ 4zSM
LP

 as follows.

zPE
LP

=
�

s∈Sw

�

j∈N

p̄jā
s
j
xPE
s

=
�

s∈Sw

�

j∈N

p̄jā
s
j

�

�

i∈V0

𝜆i
0
vi
0s

�

=
�

i∈V0

𝜆i
0

�

�

s∈Sw

�

j∈N

p̄jā
s
j
⌊vi

0s
⌋ +

�

s∈Sw

�

j∈N

p̄jā
s
j
f i
0
(⌈vi

0s
⌉ − ⌊vi

0s
⌋)

�

,

2zPM
LP

= 2zPE
LP

≤ 4zPR
LP

≤ 4zSM
LP

.

1 = z∗ ≤ zSM
LP

≤ zPM
LP

≤ zML
LP

= 1,

	 S. Kang et al.

Example 3  The large plate has a (width, height) pair of ( 2M , 2M ) and there are four
different types of items sharing the same (width, height) pair, ( M + 1 , M + 1 ), with
unit profit and unit demand. Here, only one item can be cut from this plate. Now, let
us consider ML for this example, that is, z∗ = 1 . We define xML ∈ ℝ

n×n
+

 as follows:

It can be easily shown that xML ∈ PML . Also, the corresponding objective value is
4M∕(M + 1) , and it converges to 4 as M goes to infinity. On the other hand, we can
see that 4 is a trivial upper bound on zML

LP
 . Therefore, xML is an optimal solution for

the LP-relaxation of ML as M → ∞.
Possible width patterns and height patterns are given as follows:

respectively. Let us consider PM for this example. Then, we can see that constraint
(10) reduces to

∑

q∈Qw
xq ≤ 2M∕(M + 1) , where the left hand-side is equivalent

to the objective value. Hence, zPM
LP

 is less than or equal to 2M∕(M + 1) . We define
xPM ∈ PPM as xPM

1
= xPM

2
= M∕(M + 1) and xPM

3
= xPM

4
= 0 . Since the correspond-

ing objective value is 2M∕(M + 1) , xPM is an optimal solution. Therefore, zPM
LP

 con-
verges to 2 as M goes to infinity.

Now, let us consider SM for this example. The aggregation of constraints (12)
results in

∑

q∈Qw
xq ≤ 1 by constraint (13), which implies that zSM

LP
≤ 1 . We define

(xSM, ySM) ∈ ℝ
|Qw|×|Qh|

+ as xSM
1

= ySM
1

= 1 and otherwise 0. It is easy to check that

(xSM, ySM) ∈ PSM . The corresponding objective value is 1, that is, (xSM, ySM) is
an optimal solution for the LP-relaxation of SM because zSM

LP
≤ 1 . Therefore, this

example satisfies zML
LP

≤ 2zPM
LP

≤ 4zSM
LP

 tightly as M goes to infinity. Furthermore, this
instance for any given M ≥ 3 is a strict example for the relationship zSM

LP
≤ zPM

LP
≤ zML

LP

.
We note that the example contains items with equivalent width, height, and profit,

but not merged in a single type (m = 1) . However, the same result is achievable by
modifying the widths and heights of items differently from each other, where the
ratio between the height and width for each item converges to 1 when M goes to ∞ ,
while item widths and heights remain greater than M.

4 � Conclusion

This paper presents several integer linear programming models for the 2DK based
on pattern-based models for the 2DCS. In addition, the well-known level pack-
ing model for the 2DK is modified by adding some valid inequalities, enhanc-
ing its LP-relaxation bound and making its structure easier to analyze. Then, we

xML
11

= xML
33

= xML
21

= xML
43

=
M

M + 1
; xML

jk
= 0, otherwise.

Pw = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

Ph = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

Theoretical analysis of integer programming models for the…

compare the LP-relaxation bounds of these models. The results show that the
level packing model provides weaker LP-relaxation bounds compared to pattern-
based models. We also investigate the worst-case ratio between the LP-relaxation
bounds of the level packing model and pattern-based models. The ratio between
the level packing model and strip packing model is 2, while the computational
results of Appendix B and Lodi and Monaci [13] observed that the ratios are rel-
atively close to 1 for the benchmark test instances. The ratio further increases
when compared with the staged pattern model. Therefore, more elaborate com-
putational comparisons should be conducted with various instances for the level
packing model and pattern-based models. For future works, the presented models
can be compared to other models derived from 2DCS models, such as the arc-
flow model [14] and the one-cut model [17]. Including the relationship of LP-
relaxation bounds, analyzing properties of various models will provide useful
information to devise more efficient exact and heuristic algorithms for the 2DK.

Appendix A: LP‑relaxations of SM and SM=

Proposition 9  zSM
LP

= zSM
=

LP
.

Proof  We note that both SM and SM= consider not just maximal height patterns,
but all height patterns. It is clear that zSM

LP
≥ zSM

=

LP
 since feasible solutions for the LP-

relaxation of SM= are also feasible for the LP-relaxation of SM. Hence, we only
prove that zSM

LP
≤ zSM

=

LP
 . For any given (x, y) ∈ PSM , we show that a feasible solution

for the LP-relaxation of SM= can be constructed, which yields the same objective
value as zSM

LP
.

Let (x̂, ŷ) be a feasible solution for the LP-relaxation of SM. We define
𝜉i =

∑

q∈Qi
w
x̂q , 𝛿i =

∑

r∈Qh
br
i
ŷr − 𝜉i for each i ∈ M , and Δ = (�1 + �1,… , �m + �m) .

Note that �i ≥ 0 for each i ∈ M since (x̂, ŷ) ∈ PSM . If
∑

i∈M �i = 0 , then it is clear
that (x̂, ŷ) ∈ PSM= . Hence, assume that

∑

i∈M 𝛿i > 0 . Let C be the convex hull of 0
and all the height patterns ( br’s). Then, it is clear that Δ =

∑

r∈Qh
brŷr ∈ C . Addi-

tionally, let k = argmini∈M{𝛿i > 0} , and let Δ̄ be the same vector as Δ except the kth
component is replaced with �k . We first show that Δ̄ ∈ C , that is, there exists
ȳ ∈ ℝ

|Qh|

+ such that Δ̄ =
∑

r∈Qh
brȳr and

∑

r∈Qh
ȳr ≤ 1 . Let Δ0 be the same vector as Δ

except the kth component replaced with 0. For each r ∈ Qh , let us define b̂
r
 be the

same vector as br with the kth component replaced with 0. Then, Δ0 is equal to
∑

r∈Qh
b̂
r
ŷr where

∑

r∈Qh
ŷr ≤ 1 , which means that Δ0 ∈ C because b̂

r
∈ C for each

r ∈ Qh by the definition of the height pattern. On the other hand, Δ̄ can be repre-
sented as a convex combination of Δ and Δ0 as follows:

Therefore, Δ̄ ∈ C since Δ ∈ C and Δ0 ∈ C , which implies that there exists ȳ ∈ ℝ
|Qh|

+
such that Δ̄ =

∑

r∈Qh
brȳr and

∑

r∈Qh
ȳr ≤ 1.

Δ̄ =
𝜉k

𝜉k + 𝛿k
Δ +

𝛿k

𝜉k + 𝛿k
Δ0.

	 S. Kang et al.

We iterate the above procedure, replacing further components of Δ̄ , so obtaining
an updated vector ȳ , until we reach Δ̄ = (𝜉1,… , 𝜉m) . The resulting ȳ ∈ ℝ

|Qh|

+ satisfies
∑

r∈Qh
br
i
ȳr = 𝜉i =

∑

q∈Qi
w
x̂q for each i ∈ M and

∑

r∈Qh
ȳr ≤ 1 . Therefore,

(x̂, ȳ) ∈ PSM= . It is clear that the corresponding objective value is the same as zSM
LP

because it depends only on x̂ . Therefore, the result follows. 	� ◻

Appendix B: Computational results

In this section, we compare the different LP-relaxation models computationally. We
report the LP-relaxation bound and computation time for each model: LM, ML, PM,
and SM. The computational experiments were conducted on a CPU with Intel(R)
Core(TM) i7-4770 and 16GB RAM using the solvers offered by Xpress 8.9 [20].
The models LM and ML were solved using the default solver of Xpress. On the other
hand, the pattern-based models, PM and SM, were solved using the column genera-
tion method. The subproblems for generating columns are defined as the bounded
knapsack problems, and each problem is solved using Xpress’ default solver. We
used 20 instances from Alvarez-Valdés et al. [1], and these instances are classified as
large instances in previous literature. The results are given in Table 1. The optimal
values z∗ are obtained from Alvarez-Valdes et al. [2]. The columns zLP and tLP rep-
resent the LP-relaxation bound and the computation time in seconds, respectively.
In addition, the problem size of each model is reported in Table 2. For LM and ML,
we report the numbers of variables and constraints (Vars and Cons in Table 2). For
the pattern-based models, the numbers of generated patterns are compared. The col-
umns WP and HP represent the numbers of width and height patterns, respectively.

The LP-relaxation of LM showed the shortest solving time, attributed to its concise
formulation. Besides, ML could yield decreased upper bounds for some instances; how-
ever, it incurs some overhead from the inclusion of additional inequalities. The differ-
ence in the number of constraints resulting in these results can be seen in Table 2. The
LP-relaxation of PM obtained better bounds in a shorter time than ML. Although SM
takes more time compared to PM, the LP-relaxation of SM gives the tightest bounds.
As can be seen in Table 2, SM generated more width patterns than PM. SM obtains the
optimal objective values in some instances.

Appendix C: Comparison between SM and PR

Let us consider the following 2DK instance: I = (m,H,W, h,w, d, p) = (2, 15,
1, (7, 5), (1, 1), (1, 2), (7, 5)). We note that SM considers not just maximal height
patterns, but all height patterns. Hence, by definition, Pw = {(1, 0), (0, 1)} and
Ph = {(2, 0), (1, 1), (1, 0), (0, 3), (0, 2), (0, 1)} . Let us define (xSM, ySM) ∈ ℝ

|Qw|×|Qh|
as xSM = (1, 1.5) and ySM = (0.5, 0, 0, 0.5, 0, 0) . It can be easily checked that
(xSM, ySM) ∈ PSM and the corresponding objective value is 14.5. Therefore, zSM

LP
 is

greater than or equal to 14.5.

Theoretical analysis of integer programming models for the…

Now, let us consider PR for this instance. The instance I can be transformed into the
instance Ī = (3, 15, 1, (7, 5, 5), (1, 1, 1), (1, 1, 1), (7, 5, 5)). Then,

and

We note that each component of each element of P̄h indicates the usage of the cor-
responding width pattern. In the objective function of PR, we can see that

for each t ∈ Sh . From this observation, we can obtain an upper bound on zPR
LP

 as
follows:

where the last inequality holds due to constraint (26). Therefore, we can see that

P̄w = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

P̄h = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

∑

s∈Sw

∑

j∈N

p̄jā
s
j
b̄t
s
≤ 12,

∑

s∈Sw

∑

j∈N

∑

t∈Sh

p̄jā
s
j
b̄t
s
xt ≤

∑

t∈Sh

12xt ≤ 12,

Table 1   Comparison of the LP-relaxations of the four models

Instance z∗ LM ML PM SM

zLP tLP zLP tLP zLP tLP zLP tLP

ATP30 140,168 140,904.00 0.11 140,904.00 2.61 140,814.70 1.14 140,207.00 23.05
ATP31 820,260 825,184.00 0.25 825,184.00 6.01 824,220.00 1.14 820,868.50 74.50
ATP32 37,880 38,068.00 0.14 38,068.00 2.45 37,910.10 1.27 37,889.50 112.46
ATP33 235,580 236,903.00 0.14 236,903.00 4.81 235,734.00 6.77 235,580.00 35.28
ATP34 356,159 362,520.00 0.06 362,520.00 1.27 357,477.10 0.45 356,931.10 10.06
ATP35 614,429 623,040.00 0.09 623,040.00 1.64 617,352.80 0.53 616,651.40 12.95
ATP36 129,262 131,028.00 0.06 131,028.00 2.19 130,136.40 0.58 129,486.80 11.30
ATP37 384,478 387,640.00 0.16 387,640.00 1.88 385,900.00 1.42 384,665.30 56.00
ATP38 259,070 261,698.00 0.11 261,698.00 2.56 259,434.50 0.78 259,329.50 39.58
ATP39 266,135 269,538.00 0.05 269,538.00 1.19 268,668.00 0.53 266,585.50 19.56
ATP40 63,945 68,547.30 0.39 68,076.30 3.84 64,425.80 0.91 63,963.40 53.20
ATP41 202,305 215,993.00 0.13 213,954.80 0.91 205,389.20 0.45 202,305.00 17.87
ATP42 32,589 34,080.10 0.49 33,691.70 4.56 32,932.90 1.64 32,789.00 94.56
ATP43 208,998 222,175.70 0.25 221,279.00 1.31 214,503.60 1.11 212,093.30 64.20
ATP44 70,940 77,453.50 0.14 77,082.90 1.34 74,652.50 0.38 72,658.40 15.20
ATP45 74,205 77,892.40 0.11 77,484.80 1.55 74,324.90 0.27 74,205.00 8.84
ATP46 146,402 154,646.50 0.14 154,646.50 1.25 148,735.20 0.53 146,402.00 35.54
ATP47 144,317 157,521.80 0.16 157,160.30 0.73 150,603.00 0.45 144,526.50 23.75
ATP48 165,428 173,553.00 0.11 173,504.70 1.08 166,929.80 0.67 165,944.50 17.87
ATP49 206,965 226,610.40 0.06 224,695.20 0.55 210,651.60 0.44 208,511.50 7.30

	 S. Kang et al.

for this instance.

Acknowledgements  The authors would like to thank the Institute for Industrial Systems Inno-
vation of Seoul National University for the administrative support. This work was supported by
the National Research Foundation of Korea (NRF) grant funded by the Korean government (No.
2021R1A2C2005531).

Funding  Open Access funding enabled and organized by Seoul National University.

Data availability  Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.

zPR
LP

≤ 12 < 14.5 ≤ zSM
LP

,

Table 2   The problem size of the
four models

Instance LM ML PM SM

Vars Cons Vars Cons WP WP HP

ATP30 18,528 655 18,528 821 78 111 113
ATP31 33,411 883 33,411 1086 102 136 159
ATP32 31,125 834 31,125 1002 111 172 234
ATP33 25,200 767 25,200 944 88 102 143
ATP34 8515 442 8515 592 55 83 79
ATP35 11,781 527 11,781 688 59 80 85
ATP36 11,781 529 11,781 692 56 64 71
ATP37 24,753 761 24,753 887 86 119 152
ATP38 20,503 689 20,503 836 80 116 139
ATP39 13,366 556 13,366 636 65 81 100
ATP40 42,195 994 42,195 1044 110 167 179
ATP41 15,753 602 15,753 654 73 92 128
ATP42 52,975 1127 52,975 1242 121 201 257
ATP43 33,670 892 33,670 923 98 148 184
ATP44 19,306 674 19,306 718 78 107 112
ATP45 12,246 527 12,246 625 65 101 87
ATP46 19,503 664 19,503 702 83 155 163
ATP47 20,910 693 20,910 728 86 141 134
ATP48 14,028 568 14,028 621 68 95 107
ATP49 7140 403 7140 459 52 70 67

Theoretical analysis of integer programming models for the…

Declarations 

Conflict of interest  The authors declare that they have no Conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Alvarez-Valdés, R., Parajón, A., et al.: A tabu search algorithm for large-scale guillotine (un)
constrained two-dimensional cutting problems. Comput. Oper. Res. 29(7), 925–947 (2002)

	 2.	 Alvarez-Valdes, R., Martí, R., Tamarit, J.M., et al.: Grasp and path relinking for the two-dimen-
sional two-stage cutting-stock problem. INFORMS J. Comput. 19(2), 261–272 (2007)

	 3.	 Becker, H., Martin, M., Araujo, O., et al.: Comparative analysis of mathematical formulations
for the two-dimensional guillotine cutting problem. Int. Trans. Oper. Res. 31(5), 3010–3035
(2023)

	 4.	 Belov, G., Scheithauer, G.: A branch-and-cut-and-price algorithm for one-dimensional stock cut-
ting and two-dimensional two-stage cutting. Eur. J. Oper. Res. 171(1), 85–106 (2006)

	 5.	 Caprara, A., Monaci, M.: On the two-dimensional knapsack problem. Oper. Res. Lett. 32(1),
5–14 (2004)

	 6.	 Dyckhoff, H.: A new linear programming approach to the cutting stock problem. Oper. Res.
29(6), 1092–1104 (1981)

	 7.	 Gilmore, P.C., Gomory, R.E.: Multistage cutting stock problems of two and more dimensions.
Oper. Res. 13(1), 94–120 (1965)

	 8.	 Hifi, M.: Exact algorithms for large-scale unconstrained two and three staged cutting problems.
Comput. Optim. Appl. 18(1), 63–88 (2001)

	 9.	 Hifi, M., M’Hallah, R.: Strip generation algorithms for constrained two-dimensional two-staged
cutting problems. Eur. J. Oper. Res. 172(2), 515–527 (2006)

	10.	 Hifi, M., Roucairol, C.: Approximate and exact algorithms for constrained (un) weighted two-
dimensional two-staged cutting stock problems. J. Combin. Optim. 5(4), 465–494 (2001)

	11.	 Iori, M., De Lima, V.L., Martello, S., et al.: Exact solution techniques for two-dimensional cut-
ting and packing. Eur. J. Oper. Res. 289(2), 399–415 (2021)

	12.	 Kwon, S.J., Joung, S., Lee, K.: Comparative analysis of pattern-based models for the two-dimen-
sional two-stage guillotine cutting stock problem. Comput. Oper. Res. 109, 159–169 (2019)

	13.	 Lodi, A., Monaci, M.: Integer linear programming models for 2-staged two-dimensional knap-
sack problems. Math. Program. 94(2–3), 257–278 (2003)

	14.	 Macedo, R., Alves, C., Valério de Carvalho, J.: Arc-flow model for the two-dimensional guillo-
tine cutting stock problem. Comput. Oper. Res. 37(6), 991–1001 (2010)

	15.	 Mrad, M., Meftahi, I., Haouari, M.: A branch-and-price algorithm for the two-stage guillotine
cutting stock problem. J. Oper. Res. Soc. 64(5), 629–637 (2013)

	16.	 Russo, M., Boccia, M., Sforza, A., et al.: Constrained two-dimensional guillotine cutting prob-
lem: upper-bound review and categorization. Int. Trans. Oper. Res. 27(2), 794–834 (2020)

	17.	 Silva, E., Alvelos, F., Valério de Carvalho, J.: An integer programming model for two-and three-
stage two-dimensional cutting stock problems. Eur. J. Oper. Res. 205(3), 699–708 (2010)

	18.	 Suliman, S.M.: Pattern generating procedure for the cutting stock problem. Int. J. Prod. Econ.
74(1–3), 293–301 (2001)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 S. Kang et al.

	19.	 Valério de Carvalho, J.: Exact solution of bin-packing problems using column generation and
branch-and-bound. Ann. Oper. Res. 86, 629–659 (1999)

	20.	 Xpress: Xpress-optimizer 8.9 (2020) . URL http://​www.​fico.​com/​en

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://www.fico.com/en

	Theoretical analysis of integer programming models for the two-dimensional two-staged knapsack problem
	Abstract
	1 Introduction
	2 Integer programming models for the 2DK
	2.1 Level packing model
	2.2 Pattern-based models

	3 Comparison of integer programming models
	4 Conclusion
	Appendix A: LP-relaxations of SM and
	Appendix B: Computational results
	Appendix C: Comparison between SM and PR
	Acknowledgements
	References

