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Abstract
In this study, we theoretically compare integer programming models for the two-
dimensional two-staged knapsack problem. Including the well-known level pack-
ing model, we introduce two pattern-based models called the strip packing model 
and the staged pattern model derived from integer programming models for the 
two-dimensional two-staged cutting stock problem. We show that the level pack-
ing model provides weaker linear programming (LP) relaxation bounds than pat-
tern-based models. Furthermore, we also present upper bounds on the LP-relaxation 
bound of the level packing model, which can be obtained from the LP-relaxation 
bounds of the pattern-based models.
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1  Introduction

The two-dimensional two-staged knapsack problem (2DK in short) produces a set of 
small rectangular items by cutting a large rectangular plate. Formally, we are given 
a large rectangular plate S with height H and width W, and a list of m types of small 
rectangular items to be cut from S. An item of type i ( i = 1,… ,m ) has a height 
hi ≤ H , a width wi ≤ W , a profit pi , and an upper bound (demand) di which denotes 
the maximum number of items of type i allowed to be cut. Furthermore, we do not 
allow rotations of items. The objective is to maximize the total profit obtained from 
the set of cut items. This problem is closely related to the two-dimensional two-
staged cutting stock problem (2DCS in short) [4]. The 2DCS minimizes the number 
of plates required to cut the full demand of items, unlike the 2DK.

The 2DK is a variant of the two-dimensional knapsack problem [5], which con-
ventionally assumes that the items have to be cut in the orthogonal style: the vertical 
and horizontal sides of each item must be parallel to the vertical and horizontal sides 
of the large plate, respectively. In many practical application, additional constraints 
are imposed to the 2DK. We consider one of the common additional constraints, 
which is that the cuts should be guillotine type, i.e., each cut must divide the plate 
into two rectangles. Each item in the 2DK is obtainable from two-stage guillotine 
cuts, where the first- and second-stage cuts are orthogonal. Without loss of general-
ity, we assume that vertical cuts are made after all horizontal cuts are carried out. If 
vertical cuts should be made first, we swap the widths and heights of the plate and 
items in the given problem instance. In addition, if the direction of the first-stage 
cuts is free, we can solve the 2DK by solving two 2DKs in which the direction of 
the first-stage cuts is fixed vertically and horizontally, respectively. Especially, we 
refer to the separated sub-plates produced after the first-stage cutting as the strips or 
levels. In general, 2DK and 2DCS are used to represent the unstaged problem. How-
ever, we use these abbreviations for the sake of simplicity when referring to the two-
staged problems. For the unstaged guillotine cutting problem and the corresponding 
models, we refer the readers to Russo et al. [16], Iori et al. [11], Becker et al. [3].

A simple example of a two-staged guillotine cutting for five items is illustrated 
in Fig.  1. Both Fig.  1a and b are two-dimensional orthogonal cuttings. However, 

Fig. 1   An example of two-staged two-dimensional guillotine cutting
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only Fig. 1b is a feasible two-staged two-dimensional guillotine cutting. The first- 
and second-stage cuts are illustrated as dashed and dotted lines, respectively. Addi-
tionally, we consider the inexact case of the 2DK, that is, one can require trimming 
unnecessary areas after the second stage of guillotine cuts, such as the shaded area 
in Fig. 1b above the item (2).

The 2DK is presented as the pricing problem of the Dantzig-Wolfe decomposi-
tion approach for the 2DCS introduced by Gilmore and Gomory [7]. Therefore, the 
studies on the 2DK may provide crucial clues to solving the 2DCS and their real-
world applications. For this reason, the 2DK has received considerable attention, 
and several studies have proposed solution approaches for the problem. Gilmore 
and Gomory [7] considered a special case of the 2DK where demands of items are 
not given, which is called the unconstrained 2DK [8]. Using a dynamic program-
ming approach, the authors devised a pseudo-polynomial time exact algorithm for 
the unconstrained 2DK. Based on this result, Hifi [8] extended the algorithm for 
the unconstrained 2DK allowing the rotation of items. Unlike the unconstrained 
case, the 2DK is referred to as “constrained” when the demands are considered. The 
following section will provide the formal definition of the constrained and uncon-
strained 2DK. For the constrained 2DK, Hifi and Roucairol [10] proposed an exact 
solution approach based on the branch-and-bound algorithm utilizing the bounds 
computed by dynamic programming techniques. Lodi and Monaci [13] proposed an 
integer programming model for the constrained 2DK, which can be solved using the 
standard branch-and-bound algorithm. The authors introduced potential strips (lev-
els) that can be packed into the plate, where each height corresponds to the height of 
a specific item. The proposed integer programming model, which we call the level 
packing model, determines the usage of each potential level while packing items into 
each level. The level packing model considers items with the same shape as distinct 
ones with unit demands. The authors also proposed a variant of the level packing 
model, which treats items with the same shape as one item with demand larger than 
1. The authors proved that the LP-relaxation bounds of the level packing model and 
its variant are equivalent. In our paper, we only consider the level packing model, 
not the variant. Subsequently, the authors derived another integer programming 
model for the constrained 2DK based on the concept of “width patterns” proposed 
by Gilmore and Gomory [7], each of which represents a set of item widths that can 
be cut from the large plate along the horizontal side. We refer to this pattern-based 
model for the constrained 2DK as the strip packing model. Belov and Scheithauer 
[4] proposed a branch-and-cut-and-price algorithm using Chvátal-Gomory and 
Gomory mixed-integer cuts for the strip packing model. Heuristic algorithms for the 
2DK have also been devised as part of efficient solution approaches for the 2DCS; 
see Hifi and Roucairol [10], Hifi and M’Hallah [9], and Alvarez-Valdes et al. [2].

On the other hand, various integer programming models for the 2DCS have also 
been devised in the literature. Macedo et al. [14] extended to the 2DCS the arc-flow 
formulation, proposed by Valério  de Carvalho [19] for the one-dimensional cut-
ting stock problem. Mrad et al. [15] utilized the “height patterns”, each of which 
represents a set of item heights that can be cut from the large plate along the verti-
cal side. Subsequently, the authors proposed another pattern-based model for the 
2DCS, which utilizes both width and height patterns. Moreover, Silva et  al. [17] 
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proposed an extension to the 2DCS of the one-cut model, as originally proposed 
by Dyckhoff [6] for the one-dimensional cutting stock problem. The relationship 
between these models for the 2DCS has also been well-established. Kwon et  al. 
[12] analyzed the theoretical hierarchy between the bounds provided by the linear 
programming (LP) relaxations of these models, along with comprehensive compu-
tational comparisons.

The studies on the 2DCS can be adapted to the 2DK due to their relevance. In 
particular, the integer programming models for the 2DCS can be utilized to formu-
late the 2DK and develop efficient solution approaches. However, despite the exten-
sive studies on models for the 2DCS, to the best of our knowledge, only the level 
packing model (with its variant) and the strip packing model were proposed for the 
constrained 2DK in Lodi and Monaci [13]. Furthermore, although Lodi and Monaci 
[13] performed computational comparisons of the bounds obtained from the LP-
relaxations of the level packing model and the strip packing model, the theoretical 
comparison between them has hardly been addressed.

In this study, we discuss three integer programming models for the constrained 
2DK: an extension of the level packing model, the strip packing model, and another 
pattern-based model adapted from the model for the 2DCS proposed by Mrad et al. 
[15]. Subsequently, we conduct a theoretical comparison of the LP-relaxations of 
these models. Our contributions can be summarized as follows:

•	 We modify the level packing model of Lodi and Monaci [13] by adding a set of 
valid inequalities, which enhance the LP-relaxation bound.

•	 By utilizing the 2DCS model introduced by Mrad et al. [15], we present another 
pattern-based model for the constrained 2DK, which we refer to as the staged 
pattern model.

•	 We establish a theoretical relationship among the LP-relaxation bounds of the 
three models under consideration: the modified level packing model, the strip 
packing model inherited from Gilmore and Gomory [7], and the staged pattern 
model adapted from Mrad et al. [15]. Our analysis shows that the pattern-based 
models, i.e., the strip packing model and the staged pattern model, yield tighter 
LP-relaxation bounds compared to the level packing model. Moreover, we derive 
upper bounds on the level packing model by utilizing the LP-relaxation bounds 
of the pattern-based models. We also provide a concrete example illustrating the 
tightness of these upper bounds.

The remainder of this paper is organized as follows. In Sect. 2, we provide a formal 
definition of the 2DK, and introduce the integer programming models under con-
sideration for the problem. These models are compared theoretically with respect 
to the bounds obtained from their LP-relaxations in Sect.  3. A tight example for 
the comparison is also given in Sect. 3. Finally, concluding remarks are given in 
Sect. 4.
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2 � Integer programming models for the 2DK

This section presents three integer programming models for the 2DK: the level packing 
model, the strip packing model, and the staged pattern model. Before starting, we pro-
vide some formal definitions concerned with the 2DK.

An instance of the 2DK can be defined with input (m,H,W, h,w, d, p) where 
h = (h1,… , hm), w = (w1,… ,wm), d = (d1,… , dm) and p = (p1,… , pm) . With-
out loss of generality, we assume that all the values in the tuples are integers and 
h1 ≥ h2 ≥ ⋯ ≥ hm . Furthermore, when di > ⌊H∕hi⌋⌊W∕wi⌋ for some i ∈ M where 
M = {1,… ,m} , we treat the demand as di = ⌊H∕hi⌋⌊W∕wi⌋ by taking the geometric 
limit into consideration. The 2DK is called constrained when di < ⌊H∕hi⌋⌊W∕wi⌋ for 
some i ∈ M . On the contrary, if di = ⌊H∕hi⌋⌊W∕wi⌋ for all i ∈ M , we call the 2DK 
unconstrained. We mainly focus on the constrained 2DK in this study, however, the 
results remain valid for the unconstrained 2DK.

As described in Sect.  1, the two-staged guillotine cuttings are applied to a given 
large plate in the 2DK. The first-stage cutting produces strips that are sub-plates sepa-
rated from the given plate. Each strip is separated into items by the second-stage cut-
ting, with trimming if needed. Among the items separated from each strip, the item 
with the largest height is referred to as a strip defining item. Of course, the height of 
each strip is equivalent to that of the strip defining item.

Using these definitions, we first formally describe the level packing model proposed 
by Lodi and Monaci [13] in the following discussion. Subsequently, we enhance the 
level packing model by introducing its valid inequalities. Additionally, two pattern-
based models are discussed, the strip packing model that uses only width patterns and 
the staged pattern model that uses also height patterns.

2.1 � Level packing model

A given 2DK instance (m,H,W, h,w, d, p) can be equivalently transformed into 
another one by regarding di items of the type i as di distinct item types with a unit 
demand for each i ∈ M . Let N = {1,… , n} be the set of item types of the transformed 
instance, where n =

∑m

i=1
di . We define �j = min{i ∈ M ∶

∑i

k=1
dk ≥ j} for each 

j ∈ N , which indicates the item type of the original instance corresponding to the type 
j ∈ N of the transformed instance. Let h̄j = h𝛽j , w̄j = w𝛽j

 , and p̄j = p𝛽j for each j ∈ N . 
Then, an optimal solution of the 2DK instance (m,H,W, h,w, d, p) can be obtained by 
solving (n,H,W, h̄, w̄,1, p̄) where h̄ = (h̄1,… , h̄n) , w̄ = (w̄1, … , w̄n) and 
p̄ = (p̄1,… , p̄n).

In the transformed 2DK instances, Lodi and Monaci [13] defined n potential strips 
that have distinct strip defining items characterized by their types, from which the items 
can be cut. Using the concept of the potential strips, Lodi and Monaci [13] proposed 
the level packing model (LM) for the 2DK, which is described as follows:

(1)LM∶ maximize

n
∑

k=1

n
∑

j=k

p̄jxjk
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A decision variable xjk , for each j ∈ N and k ∈ N , represents whether the item of 
type j is to be cut from the potential strip defined by the item of type k. Specifi-
cally, in the transformed 2DK instance with the definition of the potential strips, the 
variable xkk for each k ∈ N can represent the use of the potential strip defined by the 
item of type k. Constraints (5) ensure that each potential strips is defined by the item 
of type k for each k ∈ N . Constraints (2) describe the demand limits. Constraints (3) 
represent that the total width in each potential strip cannot exceed W. Constraint (4) 
restricts the total height of the used potential strips to H.

Observe that, from constraints (3), each xjk can be positive only if xkk = 1 . 
Hence, the following inequalities

are valid for the feasible solution set of LM. By adding these inequalities to LM, we 
propose a modified level packing model (ML) described as follows:

It is clear that the LP-relaxation bound provided by ML is at least as tight as the 
LP-relaxation bound obtained from LM. Moreover, constraints (7) make it easier to 
compare the LP-relaxations between ML and the pattern-based models presented in 
the following section.

2.2 � Pattern‑based models

As mentioned in Sect. 1, the 2DK can be formulated utilizing width and height 
patterns. Formally, a width pattern can be represented as a vector a ∈ Pw where

(2)subject to

j
∑

k=1

xjk ≤ 1, ∀j ∈ N,

(3)
n
∑

j=k+1

w̄jxjk ≤ (W − w̄k)xkk, ∀k ∈ N,

(4)
n
∑

k=1

h̄kxkk ≤ H,

(5)xjk = 0, ∀k ∈ N, ∀j ∈ {1,… , k − 1},

(6)xjk ∈ {0, 1}, ∀j ∈ N, ∀k ∈ N

(7)xjk ≤ xkk, ∀k ∈ N, ∀j ∈ {k + 1,… , n}

ML∶ maximize (1)

subject to (2) − (7).
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Each width pattern can define a strip for the 2DK. Then, each component of a width 
pattern represents the number of each item type in the strip corresponding to the 
width pattern. We note that the set of width patterns, Pw , is finite and discrete. For a 
procedure to generate all patterns, we refer to Suliman [18]. Let aq = (a

q

1
,… , a

q
m) be 

an element of Pw for each q ∈ Qw , where Qw = {1,… , |Pw|} . We also define �(q) as 
the minimum index in the support of aq for each q ∈ Qw , where the support denotes 
the set of indexes with positive components of aq . We note that the support of aq is 
not empty for each q ∈ Qw since aq ≠ 0 . Here, �(q) means the strip defining item for 
the width pattern aq for each q ∈ Qw . Let Qi

w
= {q ∈ Qw ∶ �(q) = i} for each i ∈ M . 

Then, Qw can be partitioned into Qi
w
’s, that is, Qw = ∪i∈MQ

i
w
 and Qi

w
∩ Q

j
w = � for all 

i, j ∈ M such that i ≠ j.
A height pattern can also be represented as a vector b ∈ Ph where

We refer to each height pattern in Ph as br = (br
1
,… , br

m
) for each r ∈ Qh where 

Qh = {1,… , |Ph|} . Unlike width patterns, the demand limits are neglected in the 
definition of height patterns, that is, height patterns are unconstrained. These height 
patterns are used later to describe the staged pattern model together with width pat-
terns. In the staged pattern model, the demand limits can be expressed using only 
the variables associated with width patterns. Therefore, the demand limits are not 
necessary in the definition of height patterns.

Figure  2 illustrates how these patterns represent a solution for the 2DK. In 
this example, the large plate is divided into two strips and one waste fragment 
(the shaded strip) by two first-stage cuts (dashed lines). Subsequently, the sec-
ond-stage cuts (dotted lines) divide each strip into items with trimming. The 
set of items produced from each strip by the second-stage cuts corresponds to a 
width pattern. In other words, a width pattern can represent second-stage cuts. 
Now, let us consider the strip defining items for the strips. The set of these items 

Pw =

{

a ∈ ℤ
m
+
⧵ {0} ∶

∑

i∈M

wiai ≤ W; ai ≤ di, ∀i ∈ M

}

.

Ph =

{

b ∈ ℤ
m
+
⧵ {0} ∶

∑

i∈M

hibi ≤ H

}

.

Fig. 2   An illustration of a height pattern and width patterns
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corresponds to a height pattern, that is, a height pattern can represent first-stage 
cuts.

Now, we introduce two pattern-based models for the 2DK. The strip packing 
model (PM) proposed by Lodi and Monaci [13] utilizes only the width patterns, and 
it can be formulated as follows:

For each q ∈ Qw , a decision variable xq represents the number of used strips cor-
responding to the width pattern aq . Constraints (9) describe the demand limits, and 
constraint (10) states that the total height of the strips corresponding to the used 
width patterns cannot exceed H.

An alternative pattern-based model using both width and height patterns can be 
derived from the 2DCS model introduced in Mrad et al. [15]. We refer to this model 
as the staged pattern model (SM) for 2DK, which is formulated as follows:

Here, the decision variables xq , the objective function (8), and constraints (9) are the 
same as those in the strip packing model. However, the staged pattern model utilizes 
height patterns to limit the total height of the used strips, unlike the strip packing 
model. A binary decision variable yr for each r ∈ Qh represents whether or not the 
height pattern br is used. Due to constraint (13), at most one height pattern can be 
chosen. For all i ∈ M , constraints (12) restrict the number of used strips defined by 
item i to being less than or equal to the number of strips defined by the same item 

(8)PM∶ maximize
∑

q∈Qw

∑

i∈M

pia
q

i
xq

(9)subject to
∑

q∈Qw

a
q

i
xq ≤ di, ∀i ∈ M,

(10)
∑

i∈M

∑

q∈Qi
w

hixq ≤ H,

(11)xq ∈ ℤ+, ∀q ∈ Qw.

SM∶ maximize (8)

subject to (9), (11),

(12)
∑

r∈Qh

br
i
yr ≥

∑

q∈Qi
w

xq, ∀i ∈ M,

(13)
∑

r∈Qh

yr ≤ 1,

yr ∈ {0, 1}, ∀r ∈ Qh.
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which is allowed by the chosen height pattern. By constraints (12), (13), and the 
definition of a height pattern, the total height of used strips is restricted to H.

Note that, when we use SM to solve the 2DK, we may consider only maximal 
height patterns where a height pattern br is called maximal if there exists no height 
pattern br

′

 such that br
k
< br

′

k
 for some k ∈ M . In SM, replacing Qh with the set of 

indices of maximal height patterns can be beneficial in computational aspects since 
the number of variables can be reduced, while the LP relaxation bound does not 
change. However, for simplicity in the discussion, we consider all height patterns 
throughout this paper because we mainly focus on the comparison of the LP relaxa-
tion bounds of the discussed models. Also note that even if we change the inequali-
ties in constraints (12) to equalities, the resulting model, which we call SM= , is a 
valid formulation of the 2DK. However, SM= has two drawbacks compared to SM. 
Firstly, height patterns which are not maximal can not be excluded from SM= to sat-
isfy constraints (12) at equalities. Secondly, the LP-relaxation bound of SM= is not 
stronger than that of SM (see the proof of Proposition 9 in Appendix A). Therefore, 
it is not advantageous to use SM= over SM.

The modified level packing model (ML) and the two pattern-based models (PM, 
SM) differ significantly in term of the definition of variables and the model size such 
as the number of variables and constraints. Specifically, PM and SM have exponen-
tially many variables, whereas the number of variables of ML is pseudo-polynomial 
in the input size. In particular, SM has more variables than PM since the former 
utilizes both width and height patterns. Accordingly, these three models may yield 
different LP-relaxation bounds, and the computation times to obtain the bounds may 
vary significantly depending on the models. It is important to deal with the trade-
off between the tightness of the LP-relaxation bound and the computation time in 
practice. Nonetheless, as mentioned in Sect. 1, this paper mainly focuses on the LP-
relaxation bounds provided by these models. For the readers interested in the com-
putational aspects of the LP-relaxations of these three models, brief computational 
test results are reported in Appendix B.

In the subsequent discussion, we compare the LP-relaxation bounds of the pre-
sented models: the modified level packing model (ML), the strip packing model 
(PM), and the staged pattern model (SM). Lodi and Monaci (2003) only compu-
tationally compared the bounds of LM and PM, while we theoretically analyze the 
LP-relaxation bounds of the presented three models along with brief computational 
results.

3 � Comparison of integer programming models

For a given 2DK instance, let z∗ be the optimal objective value and zmodel
LP

 be the LP-
relaxation bound of the corresponding model for the 2DK. We also define Pmodel as 
the feasible solution set of the LP-relaxation of the model. For example, for the LP-
relaxation of PM, zPM

LP
 and PPM are the optimal objective value and feasible solution 

set, respectively.
Using these notations, we first compare the pattern-based models.
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Proposition 1    z∗ ≤ zSM
LP

≤ zPM
LP

.

Proof  It is clear that z∗ ≤ zSM
LP

 and z∗ ≤ zPM
LP

 . Therefore, we only show that zSM
LP

≤ zPM
LP

 . 
Let (xSM, ySM) ∈ PSM be an optimal solution of the LP-relaxation of SM. By con-
straints (12), (13), and the definition of Ph , the following inequalities

hold. This result implies that xSM ∈ PPM because xSM satisfies constraints (9) and 
(10) due to its definition and the above inequalities. Therefore, zSM

LP
 is less than or 

equal to zPM
LP

 . 	�  ◻

We present a 2DK instance where zSM
LP

< zPM
LP

 in Example 3.
Now, we compare the modified level packing model and pattern-based models. For 

ease of the analysis, we introduce an extended version of PM where the width pattern 
set is defined for the instance (n,H,W, h̄, w̄,1, p̄) , as follows:

An element of P̄w is denoted as ās for each s ∈ Sw where Sw = {1,… , |P̄w|} . 
Let 𝜃̄(s) denote the minimum index in the support of ās for each s ∈ Sw , and 
S
j
w = {s ∈ Sw ∶ 𝜃̄(s) = j} for each j ∈ N . Then, in the similar manner with Qw , Sw 

can be partitioned into Sjw’s.

Example 1  Let us consider an instance (2, 3, 3, h,w, d, p) where h = (2, 1) , w = (2, 1) , 
d = (1, 2) , and p = (4, 1) . The width pattern set for this instance, Pw , is defined as 
follows:

This instance can be equivalently transformed into (3, 3, 3, h̄, w̄,1, p̄) with 
h̄ = (2, 1, 1) , w̄ = (2, 1, 1) , and p̄ = (4, 1, 1) . Then, P̄w is defined as follows:

Using P̄w , the extended version of PM, denoted as PE, is defined as follows:

H ≥ max
r∈Qh

∑

i∈M

hib
r
i
≥

∑

r∈Qh

ySM
r

(

∑

i∈M

hib
r
i

)

≥
∑

i∈M

hi

∑

r∈Qh

br
i
ySM
r

≥
∑

i∈M

hi

∑

q∈Qi
w

xSM
q

P̄w =

{

ā ∈ {0, 1}n ⧵ {0} ∶
∑

j∈N

w̄jāj ≤ W

}

.

Pw = {(1, 0), (1, 1), (0, 1), (0, 2)}.

P̄w = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 0), (0, 0, 1), (0, 1, 1)}.

PE∶ maximize
∑

s∈Sw

∑

j∈N

p̄jā
s
j
xs
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We note that both PE and ML formulate the same instance (n,H,W, h̄, w̄,1, p̄) which 
is transformed from the original one, whereas PM and SM formulate the original 
one. The following proposition shows the relationship between ML and PE.

Proposition 2  zPE
LP

≤ zML
LP

.

Proof  Let xPE ∈ PPE be an optimal solution for the LP-relaxation of PE, whose 
objective value is zPE

LP
 . We show that a feasible solution for the LP-relaxation of ML 

can be constructed from xPE , which yields the same objective value.
We define xML ∈ [0, 1]n×n as

while xML
jk

= 0 , otherwise. Then, by constraints (14), we can see that, for each j ∈ N

,

where the last equality holds since ās
j
= 0 for each s ∈ Sk

w
 such that k ∈ {j + 1,… , n} . 

This result implies that xML satisfies constraints (2) and (6). Furthermore, for each 
k ∈ N , we have

where the last inequality holds due to the definition of P̄w and the last equality holds 
because ās

k
= 1 for each s ∈ Sk

w
 . Therefore, xML satisfies constraints (3). Also, xML 

satisfies constraint (4) because

(14)subject to
∑

s∈Sw

ās
j
xs ≤ 1, ∀j ∈ N,

(15)
∑

j∈N

∑

s∈S
j
w

h̄jxs ≤ H,

xs ∈ {0, 1}, ∀s ∈ Sw.

xML
jk

=
∑

s∈Sk
w

ās
j
xPE
s
, ∀j ∈ {k,… , n}, ∀k ∈ N,

j
∑

k=1

xML
jk

=

j
∑

k=1

∑

s∈Sk
w

ās
j
xPE
s

=
∑

s∈Sw

ās
j
xPE
s

≤ 1,

n
�

j=k

w̄jx
ML
jk

=

n
�

j=k

w̄j

⎛

⎜

⎜

⎝

�

s∈Sk
w

ās
j
xPE
s

⎞

⎟

⎟

⎠

=
�

s∈Sk
w

�

n
�

j=k

w̄jā
s
j

�

xPE
s

≤ W
�

s∈Sk
w

xPE
s

= WxML
kk

,

n
∑

k=1

h̄kx
ML
kk

=
∑

k∈N

∑

s∈Sk
w

h̄kx
PE
s

≤ H,
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by constraint (15). Finally, we have

for each k ∈ N and j ∈ {k,… , n} , so that even last constraints (7) hold. Therefore, 
xML ∈ PML.

On the other hand, the objective value corresponding to xML is equivalent to zPE
LP

 
because

where the last equality holds since

by the definition of Sk
w
 . Therefore, zPE

LP
≤ zML

LP
 . 	�  ◻

We note that a 2DK instance where zPE
LP

< zML
LP

 is presented in Example 3.
On the other hand, each element of P̄w can be matched to an element of Pw 

through an onto function f ∶ P̄w → Pw defined as

where Ni = {j ∈ N ∶ �j = i} for each i ∈ M . We note that |Ni| = di.For instance, 
in Example 1, f (1, 1, 0) = f (1, 0, 1) = (1, 1) . Let Sw(q) = {s ∈ Sw ∶ f (ās) = aq} for 
each q ∈ Qw . Then, Sw can also be partitioned into Sw(q)’s, that is, Sw = ∪q∈Qw

Sw(q) 
and Sw(q1) ∩ Sw(q2) = � for any q1, q2 ∈ Qw such that q1 ≠ q2 . Additionally, it can 
be easily shown that

from the definition of Sw(q)’s, where C(�1, �2) = �1!∕(�2!(�1 − �2)!) for some �1 ∈ ℤ+ 
and �2 ∈ ℤ+ such that �1 ≥ �2 . It means the number of combinations of �1 items 
taken �2 at a time.

Based on these observations, we show that PE provides a bridge to compare the 
LP-relaxation bounds between ML and PM.

Proposition 3  zPM
LP

= zPE
LP

.

Proof  Let xPM ∈ PPM be an optimal solution of the LP-relaxation of PM, which 
yields the objective value zPM

LP
 . We first show that zPE

LP
≥ zPM

LP
 by constructing a 

xML
jk

=
∑

s∈Sk
w

ās
j
xPE
s

≤
∑

s∈Sk
w

xPE
s

= xML
kk

n
�

k=1

n
�

j=k

p̄jx
ML
jk

=

n
�

k=1

n
�

j=k

p̄j

⎛

⎜

⎜

⎝

�

s∈Sk
w

ās
j
xPE
s

⎞

⎟

⎟

⎠

=

n
�

k=1

�

s∈Sk
w

n
�

j=k

p̄jā
s
j
xPE
s

=
�

s∈Sw

�

j∈N

p̄jā
s
j
xPE
s
,

ās
j
= 0, ∀k ∈ N, ∀j ∈ {1,… , k − 1}, ∀s ∈ Sk

w

f (ā)i =
∑

j∈Ni

āj, ∀i ∈ M,

(16)|Sw(q)| =
∏

i∈M

C(di, a
q

i
), ∀q ∈ Qw,
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feasible solution of the LP-relaxation of PE from xPM , which yields the same objec-
tive value.

Let us define xPE ∈ [0, 1]|Sw| as xPE
s

= xPM
q

∕|Sw(q)| for each q ∈ Qw and s ∈ Sw(q) . 
For any fixed q ∈ Qw and i belonging to the support of aq , the following inequality 
holds by constraints (9):

Furthermore, for such q and i, we have the following inequalities from equality (16):

where the last inequality holds since di ≥ a
q

i
 . Inequalities (17) and (18) imply that 

xPE
s

∈ [0, 1] for each q ∈ Qw and s ∈ Sw(q) because

Now, we show that xPE satisfies constraints (14) and (15). Let us consider constraint 
(14) corresponding to some j ∈ N , and let j ∈ Ni for some i ∈ M . The left hand-side 
of this constraint for xPE can be represented as follows:

Here, for any fixed q ∈ Qw , 
∑

s∈Sw(q)
ās
j
 is equivalent to the number of elements s in 

Sw(q) where ās
j
= 1 . We can see that the number of such elements is equal to the size 

of Sw(q�) in a modified instance with a reduced demand of the item type i to di − 1 
for some i ∈ M such that j ∈ Ni , where q′ is the index of the width pattern such that 
a
q�

i
= a

q

i
− 1 and aq

�

k
= a

q

k
 for each k ∈ M⧵{i} . Therefore, 

∑

s∈Sw(q)
ās
j
 can be com-

puted as follows:

This result implies that xPE satisfies constraints (14) because, for each i ∈ M and 
j ∈ Ni,

(17)xPM
q

≤
di

a
q

i

.

(18)|Sw(q)| ≥ C(di, a
q

i
) =

di × (di − 1) ×⋯ × (di − a
q

i
+ 1)

a
q

i
× (a

q

i
− 1) ×⋯ × 1

≥
di

a
q

i

,

xPE
s

=
xPM
q

|Sw(q)|
≤

di

a
q

i

⋅

a
q

i

di
= 1.

∑

s∈Sw

ās
j
xPE
s

=
∑

q∈Qw

∑

s∈Sw(q)

ās
j
xPE
s

=
∑

q∈Qw

xPM
q

|Sw(q)|

∑

s∈Sw(q)

ās
j
.

∑

s∈Sw(q)

ās
j
= |{s ∈ Sw(q) ∶ ās

j
= 1}|

= C(di − 1, a
q

i
− 1)

∏

l∈M⧵{i}

C(dl, a
q

l
) =

a
q

i

di
|Sw(q)|.

∑

s∈Sw

ās
j
xPE
s

=
∑

q∈Qw

xPM
q

|Sw(q)|

∑

s∈Sw(q)

ās
j
=

∑

q∈Qw

a
q

i

di
xPM
q

≤ 1,
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where the last inequality holds due to constraints (9). Let us consider now constraint 
(15). From the definition of Sjw ’s and Sw(q)’s, it can be easily shown that

By utilizing this relationship, we can see that

 where the last inequality holds due to constraint (10). On the other hand, xPE yields 
the same objective value as zPM

LP
 . By the definition of Sw(q)’s, the following equalities 

hold:

Then, the objective value corresponding to xPE can be represented as

where the last equality implicitly uses a step from xPE
s

 to xPM
q

 as the last step in (19). 
The last term of (20) is equivalent to zPM

LP
 . This result implies that zPM

LP
≤ zPE

LP
.

Finally, we show that zPE
LP

≤ zPM
LP

 . Let xPE be a given optimal solution of the LP-
relaxation of PE, which yields the objective value zPE

LP
 . We define xPM ∈ ℝ

|Qw|

+  as 
xPM
q

=
∑

s∈Sw(q)
xPE
s

 for each q ∈ Qw . Then, xPM satisfies constraints (9) because, for 
any i ∈ M,

where the last inequality is derived by the summation of constraints (14) corre-
sponding to j ∈ Ni and by the size of Ni itself. Additionally, xPM satisfies constraint 
(10) due to the equalities in (19) to be followed in reverse order, and constraint (15) 
that assures the validity of H as an upper bound. Also, xPM yields the same objec-
tive value with xPE because of the equalities of (20) that can be developed in reverse 
order. These results imply that xPM ∈ PPM and zPE

LP
≤ zPM

LP
 . Therefore, the result fol-

lows. 	�  ◻

⋃

q∈Qi
w

Sw(q) =
⋃

j∈Ni

Sj
w
, ∀i ∈ M.

(19)

∑

j∈N

∑

s∈S
j
w

h̄jx
PE
s

=
∑

i∈M

∑

j∈Ni

∑

s∈S
j
w

h̄jx
PE
s

=
∑

i∈M

∑

q∈Qi
w

hi

(

∑

s∈Sw(q)

xPE
s

)

=
∑

i∈M

∑

q∈Qi
w

hix
PM
q

≤ H,

∑

i∈M

pia
q

i
=
∑

j∈N

p̄jā
s
j
, ∀q ∈ Qw, ∀s ∈ Sw(q).

(20)
∑

q∈Qw

∑

s∈Sw(q)

∑

j∈N

p̄jā
s
j
xPE
s

=
∑

q∈Qw

∑

s∈Sw(q)

∑

i∈M

pia
q

i
xPE
s

=
∑

q∈Qw

∑

i∈M

pia
q

i
xPM
q

,

∑

q∈Qw

a
q

i
xPM
q

=
∑

q∈Qw

∑

s∈Sw(q)

a
q

i
xPE
s

=
∑

q∈Qw

∑

s∈Sw(q)

∑

j∈Ni

ās
j
xPE
s

=
∑

j∈Ni

∑

s∈Sw

ās
j
xPE
s

≤ di,
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With Propositions 1 and 2, Proposition 3 states that the pattern-based models, PM 
and SM, provide tighter LP-relaxation bounds compared to ML and LM. In other 
words, zPM

LP
 and zSM

LP
 are lower bounds on zML

LP
 and zLM

LP
 . In the subsequent discussion, 

we also provide upper bounds on zML
LP

 using zPM
LP

 and zSM
LP

.
Let us introduce sub-structures of PML , which have useful properties to derive 

upper bounds on zML
LP

 . For each k ∈ N , let us define a polytope Rk ⊆ ℝ
n
+
 , where its 

generic element is denoted as xk = (x1k,… , xnk) , as follows:

We note that constraints in Rk correspond to constraints (3), (5), and (7) in ML for 
each k ∈ N . For any xML ∈ PML ⊆ ℝ

n×n
+

 , let xML
k

= (xML
1k

,… , xML
nk

) for each k ∈ N . 
By definition, it is clear that xML

k
∈ Rk for any fixed k ∈ N . Therefore, xML

k
 can be 

represented as a convex combination of the extreme points of Rk . Let 
vi
k
= (vi

1k
,… , vi

nk
) for all i ∈ Vk be the all non-zero extreme points of Rk , where Vk 

denotes the index set of them. Of course, vi
jk
= 0 for each j ∈ {1,… , k − 1} . Then, 

xML
k

 can be represented as xML
k

=
∑

i∈Vk
�ivi

k
 for some �i ∈ [0, 1] for each i ∈ Vk such 

that 
∑

i∈Vk
�i ≤ 1 , since the zero extreme point is not considered.

Proposition 4  For each k ∈ N and i ∈ Vk , vik has at most one fractional component, 
while vi

kk
= 1 and vi

jk
= 0 for each j ∈ {1,… , k − 1}.

Proof  For any fixed k ∈ N , let x̂k ∈ Rk be a non-zero extreme point of Rk . Since 
x̂k ∈ Rk , x̂jk = 0 for each j ∈ {1,… , k − 1} . We only consider the case when x̂kk > 0 
since x̂k = 0 if x̂kk = 0 by the definition of Rk . Suppose that 0 < x̂kk < 1 . It can be 
easily shown that x̂k∕x̂kk ∈ Rk . This result implies that x̂k with 0 < x̂kk < 1 cannot 
be an extreme point of Rk because such x̂k is represented as a convex combination 
of 0 and x̂k∕x̂kk . Finally, assume that x̂kk = 1 , and let R′

k
 be a facet of Rk , defined as 

Rk ∩ {xk ∈ [0, 1]n ∶ xkk = 1} . It is clear that x̂k is an extreme point of Rk if and only 
if x̂k is an extreme point of R′

k
 by the definition of a facet. On the other hand, R′

k
 can 

be expressed as follows:

Here, constraints xjk ≤ xkk for j ∈ {k + 1,… , n} are dropped since they are redun-
dant to the bound constraints xjk ≤ 1 for j ∈ {k + 1,… , n} . We can see that R′

k
 is 

Rk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xk ∈ [0, 1]n ∶

n
�

j=k+1

w̄jxjk ≤ (W − w̄k)xkk,

xjk ≤ xkk, ∀j ∈ {k + 1,… , n},

xjk = 0, ∀j ∈ {1,… , k − 1}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

R
�
k
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xk ∈ [0, 1]n ∶

n
�

j=k+1

w̄jxjk ≤ W − w̄k,

xkk = 1,

xjk = 0, ∀j ∈ {1,… , k − 1}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.
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represented as the LP-relaxation of the feasible solution set of a binary knapsack 
problem, where an extreme point has at most one fractional component. Accord-
ingly, an extreme point of R′

k
 has at most one fractional component among xjk ’s 

where j ∈ {k + 1,… , n} , and x̂k does so. Therefore, the result follows. 	�  ◻

Let ⌊vi
k
⌋ = (⌊vi

1k
⌋,… , ⌊vi

nk
⌋) and ⌈vi

k
⌉ = (⌈vi

1k
⌉,… , ⌈vi

nk
⌉) for each i ∈ Vk and 

k ∈ N . Then, ⌊vi
k
⌋ ≠ 0 and ⌊vi

k
⌋ corresponds to a width pattern ās of P̄w for some 

s ∈ Sk
w
 by Proposition 4 and the definition of Rk . On the other hand, let u(k) ∈ Sw 

be the index of a width pattern in P̄w , represented as a unit vector with āu(k)
k

= 1 
for each k ∈ N . It is clear that u(k) ∈ Sk

w
 for each k ∈ N . Then, for any fixed k ∈ N 

and i ∈ Vk , ⌈vik⌉ − ⌊vi
k
⌋ represents a zero vector or a unit vector corresponding to a 

width pattern āu(l) of P̄w for some l ∈ {k + 1,… , n} since vi
kk
= 1 and vi

jk
= 0 for 

each j ∈ {1,… , k − 1} by Proposition 4. Therefore, u(l) ∉ Sk
w
 for each l > k . From 

this relationship between vi
k
 ’s and width patterns, we present the upper bound on 

zML
LP

 using zPE
LP

 in the following proposition.

Proposition 5  zML
LP

≤ 2zPE
LP
.

Proof  Let xML ∈ PML be an optimal solution for the LP-relaxation of ML, where the 
corresponding objective value is zML

LP
 . We show that a feasible solution for the LP-

relaxation of PE can be constructed from xML , where the corresponding objective 
value is greater than or equal to (1∕2)zML

LP
.

Recall that, for any fixed k ∈ N , xML
k

= (xML
1k

,… , xML
nk

) can be represented with 
the extreme points of Rk . Let xML

k
=
∑

i∈Vk
�i
k
vi
k
 for some �i

k
∈ [0, 1] for each i ∈ Vk 

such that 
∑

i∈Vk
�i
k
≤ 1 . We note that vi

k
 for each i ∈ Vk can be rewritten as

where f i
k
=
∑

j∈N(v
i
jk
− ⌊vi

jk
⌋) , because vi

k
− ⌊vi

k
⌋ can have at most one non-zero com-

ponent by Proposition 4.
For each k ∈ N , Vk can be partitioned into VD

k
 and VU

k
 where

and

By definition, VD
k

 contains at least all the indexes for which vi
k
 is an integral vector, 

therefore VU
k

 is empty if all the extreme points are integer. We note that VU
k

 can be 
also empty even if some extreme points contain a fractional component.

(21)vi
k
= ⌊vi

k
⌋ + vi

k
− ⌊vi

k
⌋ = ⌊vi

k
⌋ + f i

k
(⌈vi

k
⌉ − ⌊vi

k
⌋)

VD
k
=

�

i ∈ Vk ∶
�

j∈N

p̄j⌊v
i
jk
⌋ ≥

�

j∈N

p̄jf
i
k
(⌈vi

jk
⌉ − ⌊vi

jk
⌋)

�

,

VU
k
=

�

i ∈ Vk ∶
�

j∈N

p̄j⌊v
i
jk
⌋ <

�

j∈N

p̄jf
i
k
(⌈vi

jk
⌉ − ⌊vi

jk
⌋)

�

.
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For any two real-valued n-dimensional vectors �1,�2 where �i = (�i
1
,… ,�i

n
) for 

i = 1, 2 , let us denote �1 ≥ �
2 if �1

j
≥ �2

j
 for all j = 1,… , n . Using this notation, we 

have the following inequalities for each k ∈ N:

where the last inequality holds by the equality (21).
As mentioned earlier, for each k ∈ N , ⌊vi

k
⌋ for each i ∈ Vk corresponds to a width 

pattern ās of P̄w for some s ∈ Sk
w
 . In addition, ⌈vi

k
⌉ − ⌊vi

k
⌋ for each i ∈ VU

k
 corresponds 

to āu(l) for some l ∈ {k + 1,… , n} because ⌈vi
k
⌉ − ⌊vi

k
⌋ ≠ 0 by the definition of VU

k
 . 

Based on these observations, we further partition VD
k

 and VU
k

.
Let us define Dk(s) = {i ∈ VD

k
∶ ās = ⌊vi

k
⌋} for each s ∈ Sk

w
 , and let 

Uk(l) = {i ∈ VU
k
∶ āu(l) = ⌈vi

k
⌉ − ⌊vi

k
⌋} for each l ∈ {k + 1,… , n} . It is clear 

that VD
k

 and VU
k

 are partitioned into Dk(s) ’s and Uk(l)’s, respectively. We note 
that Dk(s) ’s and Uk(l) ’s may contain more than one element. For example, 
when n = 5 and k = 1 , suppose that a width pattern ās = (1, 1, 0, 0, 0) is given 
for some s ∈ S1

w
 with four vectors, v

i1
1
= (1, 1, 0.5, 0, 0) , v

i2
1
= (1, 1, 0, 0.5, 0) , 

v
i3
1
= (1, 0, 1, 0.5, 0) , and vi4

1
= (1, 0, 0, 0.5, 1) , where i1, i2 ∈ VD

1
 and i3, i4 ∈ VU

1
 . 

Then, i1, i2 ∈ D1(s) for such s since ās = (1, 1, 0, 0, 0) = ⌊v
i1
1
⌋ = ⌊v

i2
1
⌋ . Additionally, 

āu(4) = (0, 0, 0, 1, 0) = ⌈v
i3
1
⌉ − ⌊v

i3
1
⌋ = ⌈v

i4
1
⌉ − ⌊v

i4
1
⌋ , that is, i3, i4 ∈ U1(4).

We then define �s
k
=
∑

i∈Dk(s)
�i
k
 for each s ∈ Sk

w
 and �l

k
=
∑

i∈Uk(l)
�i
k
f i
k
 for 

each l ∈ {k + 1,… , n} . If Dk(s) = � for some s ∈ Sk
w
 or Uk(l) = � for some 

l ∈ {k + 1,… , n} , we set �s
k
 or �l

k
 to 0. Then, we can see that

where the second equality holds since vi
kk
= 1 for each i ∈ Vk by Proposition 4 and 

the second inequality holds since f i
k
< 1 for each i ∈ Vk . In addition, the following 

result can be derived from the inequality (22):

(22)xML
k

=
�

i∈VD
k

�i
k
vi
k
+

�

i∈VU
k

�i
k
vi
k
≥

�

i∈VD
k

�i
k
⌊vi

k
⌋ +

�

i∈VU
k

�i
k
f i
k
(⌈vi

k
⌉ − ⌊vi

k
⌋),

(23)

1 ≥ xML
kk

=
∑

i∈Vk

�i
k
vi
kk
=

∑

i∈Vk

�i
k
=

∑

i∈VD
k

�i
k
+

∑

i∈VU
k

�i
k

≥
∑

s∈Sk
w

∑

i∈Dk(s)

�i
k
+

n
∑

l=k+1

∑

i∈Uk(l)

�i
k
f i
k
=

∑

s∈Sk
w

�s
k
+

n
∑

l=k+1

�l
k
,

xML
k

≥
�

i∈VD
k

𝜆i
k
⌊vi

k
⌋ +

�

i∈VU
k

𝜆i
k
f i
k
(⌈vi

k
⌉ − ⌊vi

k
⌋)

=
�

s∈Sk
w

�

i∈Dk(s)

𝜆i
k
ās +

n
�

l=k+1

�

i∈Uk(l)

𝜆i
k
f i
k
āu(l)

=
�

s∈Sk
w

𝜇s
k
ās +

n
�

l=k+1

𝜋l
k
āu(l)
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where the first equality holds since ⌊vi
k
⌋ = ās for each s ∈ Sk

w
 and i ∈ Dk(s) , while 

⌈vi
k
⌉ − ⌊vi

k
⌋ = āu(l) for each l ∈ {k + 1,… , n} and i ∈ Uk(l) . Then, we can see that

for each j ∈ {k + 1,… , n} because āu(l)
j

= 1 if and only if l = j.

Now, let us define xPE ∈ ℝ
|Sw|

+  as

for each k ∈ N and s ∈ Sk
w
 . Here, the second term in case s = u(k) is a sum of �k

�
 ’s for 

� ∈ {1,… , k − 1} , where �k
�
 is not zero if and only if āu(k) corresponds to ⌈vi

�
⌉ − ⌊vi

�
⌋ 

for some i ∈ VU
�

 . We show that xPE ∈ PPE . Firstly, the left hand-side of constraints 
(14) in PE for some j ∈ N can be rewritten with xPE as follows:

Here, the first equality holds since ās
j
= 0 for each k ∈ {j + 1,… , n} and s ∈ Sk

w
 , 

while the third equality holds since āu(k)
j

= 1 if and only if k = j , where āu(j)
j

= 1 also 
supports the last equality. Then, from inequalities (23) and (24), we can obtain the 
following result:

where the last inequality holds due to constraint (2). Here, we note that 
xML
jj

≥
∑

s∈S
j
w
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j
𝜇s
j
 holds by the inequality (23) since ās

j
= 1 when s ∈ S

j
w . Therefore, 

xPE satisfies constraints (14) in PE. In addition, this result implies that xPE
s

≤ 1 for 
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k
+
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�
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�
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each s ∈ Sw . Next, from the left hand-side of constraint (15) with xPE , we can derive 
the following inequalities:

where the inequality holds since h̄k ≤ h̄l for each l ∈ {1,… , k − 1} . Then, xPE satis-
fies constraint (15) by the inequality (23), because

where the last inequality holds due to constraint (4). Therefore, xPE ∈ PPE.
We now consider the objective value corresponding to xPE , denoted as ẑ . Let 

p̄s =
∑

j∈N p̄jā
s
j
 for each s ∈ Sw . Then, ẑ can be represented as follows:

Here, p̄s =
∑

j∈N p̄j⌊v
i
jk
⌋ for each k ∈ N , s ∈ Sk

w
 , and i ∈ Dk(s) by the definition of 

Dk(s) . In addition, p̄u(l) =
∑

j∈N p̄j(⌈v
i
jk
⌉ − ⌊vi

jk
⌋) for each k ∈ N , l ∈ {k + 1,… , n} , 

and i ∈ Uk(l) by the definition of Uk(l) . Accordingly, following equalities hold:
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where the last equality holds by the definition of VD
k

 and VU
k

 for each k ∈ N . On the 
other hand, zML

LP
 can be expressed as

where the last equality comes from (21). Therefore, it is clear that zML
LP

≤ 2ẑ . This 
result implies that zML

LP
≤ 2zPE

LP
 since ẑ ≤ zPE

LP
 . 	� ◻

Propositions 3 and 5 imply that, even though ML provides the weaker LP-relaxation 
bound compared to PM, the bound is tighter than twice the LP-relaxation bound of PM. 
We also show a similar result between PM and SM.

For ease of analysis, we introduce another model for the 2DK. Let us define R0 as 
follows:

We remark that h̄j is the height of the strip corresponding to the width pattern ās for 
each j ∈ N and s ∈ S

j
w . Since R0 definition has only one constraint equivalent to 

constraint (15) in PE, PPE ⊆ R0 . Accordingly, any xPE ∈ PPE can be represented as 
a convex combination of the extreme points of R0.

Let P̄h = R0 ∩ {0, 1}|Sw| ⧵ {0} . We denote each element of P̄h as b̄t ∈ {0, 1}|Sw| for 
each t ∈ Sh where Sh = {1,… , |P̄h|} . Then, each b̄t represents the usage of width pat-
terns in P̄w such that the total height is less than or equal to H. Each element of P̄h can 
be matched to some element of Ph through function g ∶ P̄h → Ph defined as

We note that g is an onto function because both P̄h and Ph do not care about demand 
constraints. Subsequently, we define Sh(r) = {t ∈ Sh ∶ g(b̄

t
) = br} for each r ∈ Qh . 

We note that Sh = ∪r∈Qh
Sh(r).

By utilizing P̄h and b̄t, t ∈ Sh , PE can be reformulated as follows, which we call PR:

zML
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⎨
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j
w

h̄jxs ≤ H
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⎪

⎬

⎪

⎭

.

g(b̄
t
)i =

∑

q∈Qi
w

∑

s∈Sw(q)

b̄t
s
, ∀i ∈ M.

PR∶ maximize
∑

s∈Sw

∑

j∈N

∑

t∈Sh

p̄jā
s
j
b̄t
s
xt

(25)subject to
∑

s∈Sw

∑

t∈Sh

ās
j
b̄t
s
xt ≤ 1, ∀j ∈ N,
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Here, the variable xt for each t ∈ Sh represents whether to use width patterns used 
in b̄t or not. Note that constraint (26) means that only one b̄t can be chosen, and so 
xs =

∑

t∈Sh
b̄t
s
xt which explains how PR is derived from PE for which constraint (15) 

is automatically satisfied due to the definitions of R0 and P̄h . We obtain the follow-
ing result from the relationship between Ph and P̄h.

Proposition 6  zPR
LP

≤ zSM
LP

.

Proof  Let xPR ∈ PPR be an optimal solution of PR, where the corresponding objec-
tive value is zPR

LP
 . We show that a feasible solution for the LP-relaxation of SM can be 

constructed from xPR , which yields the same objective value with zPR
LP

.
Let us define (xSM, ySM) ∈ ℝ

|Qw|×|Qh| as

and

Then, ySM satisfies constraint (13) because

where the last inequality holds due to constraint (26). This result also implies that 
ySM
r

≤ 1 for each r ∈ Qh . Next, we show that xSM satisfies constraints (9). For each 
i ∈ M , the following inequality

can be obtained by aggregating constraints (25) corresponding to j ∈ Ni . Then, we 
can see that

(26)
∑

t∈Sh

xt ≤ 1,

xt ∈ {0, 1}, ∀t ∈ Sh.
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q

=
∑
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t
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t
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ySM
r

=
∑
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∑
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t

=
∑

t∈Sh

xPR
t

≤ 1,
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∑
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q
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∑
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a
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where the last inequality holds due to (27). This result implies that constraints (9) 
are satisfied by xSM . Lastly, (xSM, ySM) also satisfies constraints (12) because, for 
each i ∈ M,

by the definition of xSM and ySM , as well as of Sh(r) that allows replacing br
i
 by g(b̄t)i 

in the second equality. Therefore, (xSM, ySM) ∈ PSM.
Now, we show that the objective value corresponding to (xSM, ySM) is equivalent 

to zPR
LP

 . By the definition of Sw(q) , the following equalities hold:

Using these equalities and the definition of xSM , the objective value corresponding 
to (xSM, ySM) can be represented as

where the last term is equivalent to zPR
LP

 . This result implies that zPR
LP

≤ zSM
LP

 . 	�  ◻

We note that there exists a 2DK instance where zPR
LP

< zSM
LP

 , as shown in Appendix 
C. Although PR provides a tighter LP relaxation bound than SM, PR has excessively 
many variables by the definition of b̄t’s, even far more than SM. In addition, some 
of b̄t ’s themselves represent feasible solutions for the 2DK. This implies that, even 
though the column generation approach can be applied to solve the LP relaxation of 
PR, the subproblems may be as difficult as solving the 2DK directly. Therefore, it is 
not recommended to utilize PR in practice.

Now, let vi
0
∈ [0, 1]|Sw| for all i ∈ V0 be the non-zero extreme points of R0 , 

where V0 denotes the index set of them and vi
0 s

 for each s ∈ Sw denotes each ele-
ment of vi

0
 . We note that R0 is represented as the LP-relaxation of the feasible 

solution set of a binary knapsack problem. Hence, in analogy with extreme points 
of R′

k
 from the proof of Proposition 4, each vi

0
 has at most one fractional compo-

nent. Additionally, each vi
0
 has at least one component whose value is 1 since 

h̄j ≤ H for each j ∈ N . Let ⌊vi
0
⌋ = (⌊vi

01
⌋,… , ⌊vi

0 �Sh�
⌋) and 

⌈vi
0
⌉ = (⌈vi

01
⌉,… , ⌈vi

0 �Sh�
⌉) for each i ∈ V0 . Then, each ⌊vi

0
⌋ is non-zero and corre-

�
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sponds to b̄t of P̄h for some t ∈ Sh by the definition of R0 . On the other hand, each 
⌈vi

0
⌉ − ⌊vi

0
⌋ represents a zero vector or unit vector since vi

0
 has at most one frac-

tional component. Accordingly, if ⌈vi
0
⌉ − ⌊vi

0
⌋ is a unit vector for some i ∈ V0 , then 

⌈vi
0
⌉ − ⌊vi

0
⌋ also corresponds to b̄t of P̄h for some t ∈ Sh . Based on this relationship 

between vi
0
 ’s and b̄t ’s with Proposition 6, we obtain an upper bound on zPE

LP
 using 

zSM
LP

.

Proposition 7  zPE
LP

≤ 2zPR
LP

.

Proof  Let xPE ∈ PPE be an optimal solution for the LP-relaxation of PE, whose 
objective value is zPE

LP
 . In the similar manner with the proof of Proposition 5, we 

construct a feasible solution for the LP-relaxation of PR from xPE , where the cor-
responding objective value is greater than or equal to (1∕2)zPE

LP
.

Since PPE ⊆ R0 , xPE can be represented as

for some �i
0
∈ [0, 1] for each i ∈ V0 such that 

∑

i∈V0
�i
0
≤ 1 . The second equal-

ity holds since vi
0
 for each i ∈ V0 has at most one fractional component, where 

f i
0
=
∑

s∈Sw
(vi

0 s
− ⌊vi

0 s
⌋) for each i ∈ V0 . We note that f i

0
< 1 for each i ∈ V0.

We partition V0 into VD
0

 and VU
0

 where

and

Then, ⌈vi
0
⌉ − ⌊vi

0
⌋ for each i ∈ VU

0
 corresponds to b̄t for some t ∈ Sh , where b̄t rep-

resents a unit vector, since ⌈vi
0
⌉ − ⌊vi

0
⌋ ≠ 0 by the definition of VU

0
 . Also, ⌊vi

0
⌋ for 

each i ∈ VD
0

 corresponds to b̄t for some t ∈ Sh as mentioned earlier. Let us define 
D0(t) = {i ∈ VD

0
∶ ⌊vi

0
⌋ = b̄

t
} and U0(t) = {i ∈ VU

0
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0
⌉ − ⌊vi

0
⌋ = b̄

t
} for each 

t ∈ Sh . Then, it is clear that VD
0

 and VU
0

 are partitioned into D0(t) ’s and U0(t)’s, 
respectively.

Now, we define xPR ∈ ℝ
|Sh|

+  as, for each t ∈ Sh,

where xPR
t

= 0 if D0(t) = � and U0(t) = � . We first show that xPR ∈ PPR . From the 
definition of xPR , the following inequalities
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s
j
f i
0
(⌈vi

0s
⌉ − ⌊vi

0s
⌋)

�

.

xPR
t

=
∑

i∈D0(t)

�i
0
+

∑

i∈U0(t)

�i
0
f i
0
,



	 S. Kang et al.

hold. We note that the first inequality, which is valid because f i
0
< 1 , becomes 

equality when U0(t) = � for all t ∈ Sh . This result implies that xPR ∈ [0, 1]|Sh| and 
xPR satisfies constraint (26). On the other hand, recall that, for each t ∈ Sh , ⌊vi0⌋ = b̄

t 
for each i ∈ D0(t) and ⌈vi

0
⌉ − ⌊vi

0
⌋ = b̄

t for each i ∈ U0(t) . From this relationship 
between b̄t ’s and vi

0
’s, we have the following inequalities for each s ∈ Sw:

where the last inequality holds since vi
0
= ⌊vi

0
⌋ + f i

0
(⌈vi

0
⌉ − ⌊vi

0
⌋) for each i ∈ V0 . 

Then, xPR satisfies constraints (25) because, for each j ∈ N,

where the first inequality holds by (29) and the last inequality holds due to con-
straints (14). Therefore, xPR ∈ PPR.

The objective value corresponding to xPR can be represented as
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where the second equality holds due to the equalities in (29). Here, the third equality 
holds due to the definition of VD

0
 and VU

0
 . On the other hand, zPE

LP
 can be represented 

as

where the last equality holds due to the equalities (28). Therefore, the objective 
value corresponding to xPR is greater than or equal to (1∕2)zPE

LP
 . This result implies 

that zPE
LP

≤ 2zPR
LP

 . 	�  ◻

Because zPM
LP

= zPE
LP

 and zPR
LP

≤ zSM
LP

 by Propositions 3 and 6, respectively, Proposi-
tion 7 implies that zPM

LP
≤ 2zSM

LP
 . Our findings throughout this paper can be summa-

rized as the following theorem.

Theorem 8  z∗ ≤ zSM
LP

≤ zPM
LP

≤ zML
LP

≤ 2zPM
LP

≤ 4zSM
LP

.

Proof  Propositions 2, 3, and 5 imply that zPM
LP

≤ zML
LP

≤ 2zPM
LP

 . Furthermore, by Prop-
ositions 3, 6 and 7, we have

Therefore, with Proposition 1, the result follows. 	�  ◻

We now introduce a tight example for the relationship zSM
LP

≤ zPM
LP

≤ zML
LP

.

Example 2  The large plate has a (width, height) pair of (1, 2) and there is only one 
item with (width, height)=(1, 1), which has a unit profit and unit demand. We note 
that this 2DK instance is constrained by definition. Recall that z∗ is the optimal 
objective value of this 2DK instance. It is clear that z∗ = 1 since this item can be cut 
from this plate. Let us consider ML for this example. By definition, ML has only one 
variable x11 ∈ [0, 1] . Let xML

11
= 1 . It is trivial that xML

11
 is an optimal solution for the 

LP-relaxation of ML. Accordingly, zML
11

= 1 . From Propositions 1 and 5, we can see 
that

for this instance, that is, zSM
LP

= zPM
LP

= zML
LP

 . This instance is also a strict example for 
the relationship zML

LP
≤ 2zPM

LP
≤ 4zSM

LP
.

Additionally, we present an asymptotically tight example for the relationship 
zML
LP

≤ 2zPM
LP

≤ 4zSM
LP

 as follows.
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=
�
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�

j∈N

p̄jā
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j
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�
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�
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�
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𝜆i
0
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0s

�
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�
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�

�

s∈Sw

�
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0s
⌋ +
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s∈Sw
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p̄jā
s
j
f i
0
(⌈vi

0s
⌉ − ⌊vi

0s
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�

,

2zPM
LP

= 2zPE
LP

≤ 4zPR
LP

≤ 4zSM
LP

.

1 = z∗ ≤ zSM
LP

≤ zPM
LP

≤ zML
LP

= 1,
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Example 3  The large plate has a (width, height) pair of ( 2M , 2M ) and there are four 
different types of items sharing the same (width, height) pair, ( M + 1 , M + 1 ), with 
unit profit and unit demand. Here, only one item can be cut from this plate. Now, let 
us consider ML for this example, that is, z∗ = 1 . We define xML ∈ ℝ

n×n
+

 as follows:

It can be easily shown that xML ∈ PML . Also, the corresponding objective value is 
4M∕(M + 1) , and it converges to 4 as M goes to infinity. On the other hand, we can 
see that 4 is a trivial upper bound on zML

LP
 . Therefore, xML is an optimal solution for 

the LP-relaxation of ML as M → ∞.
Possible width patterns and height patterns are given as follows:

respectively. Let us consider PM for this example. Then, we can see that constraint 
(10) reduces to 

∑

q∈Qw
xq ≤ 2M∕(M + 1) , where the left hand-side is equivalent 

to the objective value. Hence, zPM
LP

 is less than or equal to 2M∕(M + 1) . We define 
xPM ∈ PPM as xPM

1
= xPM

2
= M∕(M + 1) and xPM

3
= xPM

4
= 0 . Since the correspond-

ing objective value is 2M∕(M + 1) , xPM is an optimal solution. Therefore, zPM
LP

 con-
verges to 2 as M goes to infinity.

Now, let us consider SM for this example. The aggregation of constraints (12) 
results in 

∑

q∈Qw
xq ≤ 1 by constraint (13), which implies that zSM

LP
≤ 1 . We define 

(xSM, ySM) ∈ ℝ
|Qw|×|Qh|

+  as xSM
1

= ySM
1

= 1 and otherwise 0. It is easy to check that 

(xSM, ySM) ∈ PSM . The corresponding objective value is 1, that is, (xSM, ySM) is 
an optimal solution for the LP-relaxation of SM because zSM

LP
≤ 1 . Therefore, this 

example satisfies zML
LP

≤ 2zPM
LP

≤ 4zSM
LP

 tightly as M goes to infinity. Furthermore, this 
instance for any given M ≥ 3 is a strict example for the relationship zSM

LP
≤ zPM

LP
≤ zML

LP

.
We note that the example contains items with equivalent width, height, and profit, 

but not merged in a single type (m = 1) . However, the same result is achievable by 
modifying the widths and heights of items differently from each other, where the 
ratio between the height and width for each item converges to 1 when M goes to ∞ , 
while item widths and heights remain greater than M.

4 � Conclusion

This paper presents several integer linear programming models for the 2DK based 
on pattern-based models for the 2DCS. In addition, the well-known level pack-
ing model for the 2DK is modified by adding some valid inequalities, enhanc-
ing its LP-relaxation bound and making its structure easier to analyze. Then, we 

xML
11

= xML
33

= xML
21

= xML
43

=
M

M + 1
; xML

jk
= 0, otherwise.

Pw = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

Ph = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},
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compare the LP-relaxation bounds of these models. The results show that the 
level packing model provides weaker LP-relaxation bounds compared to pattern-
based models. We also investigate the worst-case ratio between the LP-relaxation 
bounds of the level packing model and pattern-based models. The ratio between 
the level packing model and strip packing model is 2, while the computational 
results of Appendix B and Lodi and Monaci [13] observed that the ratios are rel-
atively close to 1 for the benchmark test instances. The ratio further increases 
when compared with the staged pattern model. Therefore, more elaborate com-
putational comparisons should be conducted with various instances for the level 
packing model and pattern-based models. For future works, the presented models 
can be compared to other models derived from 2DCS models, such as the arc-
flow model [14] and the one-cut model [17]. Including the relationship of LP-
relaxation bounds, analyzing properties of various models will provide useful 
information to devise more efficient exact and heuristic algorithms for the 2DK.

Appendix A: LP‑relaxations of SM and SM=

Proposition 9  zSM
LP

= zSM
=

LP
.

Proof  We note that both SM and SM= consider not just maximal height patterns, 
but all height patterns. It is clear that zSM

LP
≥ zSM

=

LP
 since feasible solutions for the LP-

relaxation of SM= are also feasible for the LP-relaxation of SM. Hence, we only 
prove that zSM

LP
≤ zSM

=

LP
 . For any given (x, y) ∈ PSM , we show that a feasible solution 

for the LP-relaxation of SM= can be constructed, which yields the same objective 
value as zSM

LP
.

Let (x̂, ŷ) be a feasible solution for the LP-relaxation of SM. We define 
𝜉i =

∑

q∈Qi
w
x̂q , 𝛿i =

∑

r∈Qh
br
i
ŷr − 𝜉i for each i ∈ M , and Δ = (�1 + �1,… , �m + �m) . 

Note that �i ≥ 0 for each i ∈ M since (x̂, ŷ) ∈ PSM . If 
∑

i∈M �i = 0 , then it is clear 
that (x̂, ŷ) ∈ PSM= . Hence, assume that 

∑

i∈M 𝛿i > 0 . Let C be the convex hull of 0 
and all the height patterns ( br’s). Then, it is clear that Δ =

∑

r∈Qh
brŷr ∈ C . Addi-

tionally, let k = argmini∈M{𝛿i > 0} , and let Δ̄ be the same vector as Δ except the kth 
component is replaced with �k . We first show that Δ̄ ∈ C , that is, there exists 
ȳ ∈ ℝ

|Qh|

+  such that Δ̄ =
∑

r∈Qh
brȳr and 

∑

r∈Qh
ȳr ≤ 1 . Let Δ0 be the same vector as Δ 

except the kth component replaced with 0. For each r ∈ Qh , let us define b̂
r
 be the 

same vector as br with the kth component replaced with 0. Then, Δ0 is equal to 
∑

r∈Qh
b̂
r
ŷr where 

∑

r∈Qh
ŷr ≤ 1 , which means that Δ0 ∈ C because b̂

r
∈ C for each 

r ∈ Qh by the definition of the height pattern. On the other hand, Δ̄ can be repre-
sented as a convex combination of Δ and Δ0 as follows:

Therefore, Δ̄ ∈ C since Δ ∈ C and Δ0 ∈ C , which implies that there exists ȳ ∈ ℝ
|Qh|

+  
such that Δ̄ =

∑

r∈Qh
brȳr and 

∑

r∈Qh
ȳr ≤ 1.

Δ̄ =
𝜉k

𝜉k + 𝛿k
Δ +

𝛿k

𝜉k + 𝛿k
Δ0.
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We iterate the above procedure, replacing further components of Δ̄ , so obtaining 
an updated vector ȳ , until we reach Δ̄ = (𝜉1,… , 𝜉m) . The resulting ȳ ∈ ℝ

|Qh|

+  satisfies 
∑

r∈Qh
br
i
ȳr = 𝜉i =

∑

q∈Qi
w
x̂q for each i ∈ M and 

∑

r∈Qh
ȳr ≤ 1 . Therefore, 

(x̂, ȳ) ∈ PSM= . It is clear that the corresponding objective value is the same as zSM
LP

 
because it depends only on x̂ . Therefore, the result follows. 	�  ◻

Appendix B: Computational results

In this section, we compare the different LP-relaxation models computationally. We 
report the LP-relaxation bound and computation time for each model: LM, ML, PM, 
and SM. The computational experiments were conducted on a CPU with Intel(R) 
Core(TM) i7-4770 and 16GB RAM using the solvers offered by Xpress 8.9 [20]. 
The models LM and ML were solved using the default solver of Xpress. On the other 
hand, the pattern-based models, PM and SM, were solved using the column genera-
tion method. The subproblems for generating columns are defined as the bounded 
knapsack problems, and each problem is solved using Xpress’ default solver. We 
used 20 instances from Alvarez-Valdés et al. [1], and these instances are classified as 
large instances in previous literature. The results are given in Table 1. The optimal 
values z∗ are obtained from Alvarez-Valdes et al. [2]. The columns zLP and tLP rep-
resent the LP-relaxation bound and the computation time in seconds, respectively. 
In addition, the problem size of each model is reported in Table 2. For LM and ML, 
we report the numbers of variables and constraints (Vars and Cons in Table 2). For 
the pattern-based models, the numbers of generated patterns are compared. The col-
umns WP and HP represent the numbers of width and height patterns, respectively.

The LP-relaxation of LM showed the shortest solving time, attributed to its concise 
formulation. Besides, ML could yield decreased upper bounds for some instances; how-
ever, it incurs some overhead from the inclusion of additional inequalities. The differ-
ence in the number of constraints resulting in these results can be seen in Table 2. The 
LP-relaxation of PM obtained better bounds in a shorter time than ML. Although SM 
takes more time compared to PM, the LP-relaxation of SM gives the tightest bounds. 
As can be seen in Table 2, SM generated more width patterns than PM. SM obtains the 
optimal objective values in some instances.

Appendix C: Comparison between SM and PR

Let us consider the following 2DK instance: I = (m,H,W, h,w, d, p) = (2, 15, 
1, (7, 5), (1, 1), (1, 2), (7, 5)). We note that SM considers not just maximal height 
patterns, but all height patterns. Hence, by definition, Pw = {(1, 0), (0, 1)} and 
Ph = {(2, 0), (1, 1), (1, 0), (0, 3), (0, 2), (0, 1)} . Let us define (xSM, ySM) ∈ ℝ

|Qw|×|Qh| 
as xSM = (1, 1.5) and ySM = (0.5, 0, 0, 0.5, 0, 0) . It can be easily checked that 
(xSM, ySM) ∈ PSM and the corresponding objective value is 14.5. Therefore, zSM

LP
 is 

greater than or equal to 14.5.



Theoretical analysis of integer programming models for the…

Now, let us consider PR for this instance. The instance I can be transformed into the 
instance Ī = (3, 15, 1, (7, 5, 5), (1, 1, 1), (1, 1, 1), (7, 5, 5)). Then,

and

We note that each component of each element of P̄h indicates the usage of the cor-
responding width pattern. In the objective function of PR, we can see that

for each t ∈ Sh . From this observation, we can obtain an upper bound on zPR
LP

 as 
follows:

where the last inequality holds due to constraint (26). Therefore, we can see that

P̄w = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

P̄h = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

∑

s∈Sw

∑

j∈N

p̄jā
s
j
b̄t
s
≤ 12,

∑

s∈Sw

∑

j∈N

∑

t∈Sh

p̄jā
s
j
b̄t
s
xt ≤

∑

t∈Sh

12xt ≤ 12,

Table 1   Comparison of the LP-relaxations of the four models

Instance z∗ LM ML PM SM

zLP tLP zLP tLP zLP tLP zLP tLP

ATP30 140,168 140,904.00 0.11 140,904.00 2.61 140,814.70 1.14 140,207.00 23.05
ATP31 820,260 825,184.00 0.25 825,184.00 6.01 824,220.00 1.14 820,868.50 74.50
ATP32 37,880 38,068.00 0.14 38,068.00 2.45 37,910.10 1.27 37,889.50 112.46
ATP33 235,580 236,903.00 0.14 236,903.00 4.81 235,734.00 6.77 235,580.00 35.28
ATP34 356,159 362,520.00 0.06 362,520.00 1.27 357,477.10 0.45 356,931.10 10.06
ATP35 614,429 623,040.00 0.09 623,040.00 1.64 617,352.80 0.53 616,651.40 12.95
ATP36 129,262 131,028.00 0.06 131,028.00 2.19 130,136.40 0.58 129,486.80 11.30
ATP37 384,478 387,640.00 0.16 387,640.00 1.88 385,900.00 1.42 384,665.30 56.00
ATP38 259,070 261,698.00 0.11 261,698.00 2.56 259,434.50 0.78 259,329.50 39.58
ATP39 266,135 269,538.00 0.05 269,538.00 1.19 268,668.00 0.53 266,585.50 19.56
ATP40 63,945 68,547.30 0.39 68,076.30 3.84 64,425.80 0.91 63,963.40 53.20
ATP41 202,305 215,993.00 0.13 213,954.80 0.91 205,389.20 0.45 202,305.00 17.87
ATP42 32,589 34,080.10 0.49 33,691.70 4.56 32,932.90 1.64 32,789.00 94.56
ATP43 208,998 222,175.70 0.25 221,279.00 1.31 214,503.60 1.11 212,093.30 64.20
ATP44 70,940 77,453.50 0.14 77,082.90 1.34 74,652.50 0.38 72,658.40 15.20
ATP45 74,205 77,892.40 0.11 77,484.80 1.55 74,324.90 0.27 74,205.00 8.84
ATP46 146,402 154,646.50 0.14 154,646.50 1.25 148,735.20 0.53 146,402.00 35.54
ATP47 144,317 157,521.80 0.16 157,160.30 0.73 150,603.00 0.45 144,526.50 23.75
ATP48 165,428 173,553.00 0.11 173,504.70 1.08 166,929.80 0.67 165,944.50 17.87
ATP49 206,965 226,610.40 0.06 224,695.20 0.55 210,651.60 0.44 208,511.50 7.30
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for this instance.
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zPR
LP

≤ 12 < 14.5 ≤ zSM
LP

,

Table 2   The problem size of the 
four models

Instance LM ML PM SM

Vars Cons Vars Cons WP WP HP

ATP30 18,528 655 18,528 821 78 111 113
ATP31 33,411 883 33,411 1086 102 136 159
ATP32 31,125 834 31,125 1002 111 172 234
ATP33 25,200 767 25,200 944 88 102 143
ATP34 8515 442 8515 592 55 83 79
ATP35 11,781 527 11,781 688 59 80 85
ATP36 11,781 529 11,781 692 56 64 71
ATP37 24,753 761 24,753 887 86 119 152
ATP38 20,503 689 20,503 836 80 116 139
ATP39 13,366 556 13,366 636 65 81 100
ATP40 42,195 994 42,195 1044 110 167 179
ATP41 15,753 602 15,753 654 73 92 128
ATP42 52,975 1127 52,975 1242 121 201 257
ATP43 33,670 892 33,670 923 98 148 184
ATP44 19,306 674 19,306 718 78 107 112
ATP45 12,246 527 12,246 625 65 101 87
ATP46 19,503 664 19,503 702 83 155 163
ATP47 20,910 693 20,910 728 86 141 134
ATP48 14,028 568 14,028 621 68 95 107
ATP49 7140 403 7140 459 52 70 67
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