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Abstract: Conventional deduplication systems face critical challenges such as excessive write am-
plification, high read/write latency, and sub-optimal storage utilization. These limitations often
undermine the performance benefits of deduplication by slowing down I/O acknowledgements
due to amplified deduplication I/Os, excessive data chunk replication, and strict consistency re-
quirements. To address these issues, we present Speed-Dedup, a novel deduplication framework
that employs a deduplicated primary–semi-deduplicated replica object approach. This strategy
reduces write amplification by restricting deduplication to the primary object while maintaining a
semi-deduplicated replica object used for immediate read/write acknowledgements, thus enhancing
I/O latency and storage efficiency. Speed-Dedup also replaces traditional strong consistency models
with eventual consistency, allowing for non-blocking read operations and improving overall system
throughput. Experimental results demonstrate that Speed-Dedup significantly outperforms tradi-
tional methods like GRATE and CAO, showing up to 21% improvement in I/O performance under
low deduplication ratios and maintaining 14% or more gains under higher ratios. Additionally, write
amplification is substantially reduced and latency improves by over 100% with faster recovery times
during system failures. These findings highlight the effectiveness of Speed-Dedup as a scalable and
efficient solution.

Keywords: data deduplication; distributed storage system; scale-out storage; fault tolerance; write
amplification

1. Introduction

The rapid growth of data in cloud environments has led to increasing storage costs,
typically measured in terms of dollars per gigabyte (USD/GB) [1–6]. To address this chal-
lenge, data deduplication has become an essential feature of modern cloud and enterprise
storage systems. Data deduplication optimizes storage usage by eliminating redundant
data, ensuring that only unique data are stored while duplicates are referenced to the origi-
nal data [7–11]. Deduplication can be implemented through either local deduplication [12],
where duplicate elimination occurs within isolated “silos” of individual storage servers,
or global deduplication [9,10,13,14], which executes duplicate elimination across all storage
servers. The global deduplication approach significantly reduces storage requirements
compared to local deduplication, yielding notable cost savings.

It is also imperative to note that most cloud storage solutions follows a shared nothing
storage (SNS) architecture, where the failure of one node does not affect the functions of
the other nodes. Also due to data replication, the SNS nodes are inherently autonomous,
self-healing, and highly redundant. These characteristics make SNS systems particularly
well-suited for cloud storage environments. This shared nothing property brings about
the scalability in the cloud storage. In this study, we refer to these SNS systems as scale-
out storage systems. Consequently, we focus on global deduplication of these scale-out
storage systems.
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While global data deduplication effectively eliminates redundancy and reduces storage
costs, it is associated with significant performance degradation, particularly in terms
of read/write (R/W) I/O latency. This performance decline is driven by several key
drawbacks:

¶ R/W I/O Amplification: As shown in Figure 1, the data deduplication process intro-
duces additional steps, including (i) chunking, where incoming data are split into
smaller, fixed- or variable-sized chunks, (ii) hashing, where a hash value (or finger-
print) is generated for each chunk, (iii) redundancy checking, where the computed
hash is used to determine whether a chunk is unique or a duplicate, and (iv) storing
or referencing, where unique chunks are stored and duplicates are referenced to pre-
existing chunks, updating the reference count in the deduplication metadata. These
extra steps result in amplified I/O operations.

· Degraded R/W Performance: The additional overhead of deduplication increases
I/O latency for both write and read operations. Write I/O performance suffers due
to the need for chunking, hashing, redundancy checks, and disk commits for each
chunk. Similarly, read I/O performance is negatively impacted by the reconstruction
process, which requires retrieving and reassembling deduplicated data chunks before
fulfilling client read requests [10,11,15].

¸ I/O Redirections Across the Network: When data are written to a storage server,
they are chunked, and the chunks are rehashed to determine their storage
location [9,10,13,16]. This rehashing introduces additional I/O redirection, contribut-
ing to increased overhead in deduplication-enabled storage environments, particularly
in distributed systems.

¹ Chunk Replication for Fault Tolerance: Although deduplication reduces the overall
storage footprint, the need for chunk replication to ensure fault tolerance can offset
these gains. For example, when a client writes a new 4MB data object that is chun-
ked into 1 MB segments, each chunk may be replicated multiple times (e.g., with a
replication factor of three) across the cluster to maintain fault tolerance, as seen with
replication algorithms like CRUSH [17]. As a result, the original 4 MB object results
in 12 MB of stored data. In large-scale environments with millions of chunks, this
replication overhead can negate the storage efficiency achieved through deduplication.
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Figure 1. Deduplication timeline process in conventional scale-out storage.

Significant research efforts have been made to address the performance drawbacks
associated with data deduplication. Prior works [7,9–11,15,16,18–22] have focused on op-
timizing various techniques to mitigate these issues. A common strategy in these works
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involves implementing some caching mechanisms to reduce the read I/O overhead intro-
duced by deduplication. However, these solutions primarily target the optimization of read
performance, leaving the overhead in the write I/O path largely unaddressed. Moreover,
none of these works have fully explored the optimization of storage space efficiency in
relation to the write amplification caused by chunk replication for fault tolerance purposes.

Another limitation in conventional scale-out deduplication approaches is their reliance
on the built-in Write-Ahead Log (WAL) of distributed storage systems to ensure strict data
consistency. In these approaches, all write I/Os are first buffered in a WAL before being
committed to storage servers. If a write I/O operation fails, it can be retried from the
WAL until an acknowledgment is received from the storage server, ensuring data reliability.
However, the use of WAL schemes introduces an additional layer of write amplification,
as data are written twice—once to the WAL and then to the storage servers. This further
exacerbates performance degradation in deduplication-enabled storage systems, adding
significant overhead to the I/O path.

In this paper, we aim to further mitigate the various overheads associated with data
deduplication, addressing shortcomings observed in prior works. We propose a novel
solution called Speed-Dedup which focuses on fully optimizing the deduplication process
by enhancing storage space efficiency, reducing latency, and improving fault tolerance.
The contributions of this work are outlined as follows:

• Reducing the write amplification problem: Speed-Dedup significantly reduces write
amplification compared to other deduplication methods like GRATE [10] and CAO [9,16].
It efficiently manages storage by drastically lowering the total data written. For in-
stance, with a 20% deduplication ratio, Speed-Dedup shows a notable reduction in
data written to storage, highlighting its capacity for improved storage efficiency.

• Improving data recovery times: Speed-Dedup offers superior recovery times for
failed data storage locations (OSDs). As validated in our experiments, Speed-Dedup
demonstrates faster recovery with a time of 48.23 s for one failed OSD, outperforming
GRATE [10] with 53.21 s and CAO [9] with 53.29 s, and this performance improvement
increases as the number of OSD failures increase. This underscores Speed-Dedup’s
enhanced system resilience and ability to restore system health more quickly.

• Enhancing I/O performance of deduplication systems: Speed-Dedup improves over-
all I/O performance by decoupling read and write operations, allowing non-blocking
reads. This contributes to reduced latency and increased throughput, optimizing
system performance for both read and write tasks.

• Modified fault tolerance and intelligent self-healing capabilities: Speed-Dedup
maintains critical fault tolerance and self-healing capabilities while optimizing system
efficiency. We implement new mechanisms called the object replica check (ORC)
and chunk availability check (CAC) for fault tolerance and recovery. ORC and CAC
ensure high data availability, enhancing system resilience and robustness, especially
in failure scenarios.

Through these innovations, our work seeks to further improve the performance and
space efficiency whilst maintaining the consistency of deduplication-enabled storage systems.

2. Background and Motivation

In this section, we provide the essential background and practical challenges involved
in implementing effective and high-performance deduplication storage systems. We specif-
ically target the scale-out storage systems due to their inherent intelligent and self-healing
nature suitable for cloud storage environments.

2.1. Background

The implementation of a scale-out deduplication-enabled storage system is highly
dependent on the architecture of the distributed file system, particularly for ensuring
consistency and failure recovery [9,10,13,16]. However, this heavy reliance can significantly
impact the overall performance of the deduplication system. Figure 2 illustrates the
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components and processes involved in a scale-out deduplication storage system. We begin
by outlining the general structure of a conventional scale-out deduplication storage cluster.
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Figure 2. Conventional WAL-based data deduplication with replication in scale-out storage.

¶ Clients: Clients interact with the deduplication-enabled storage system through two
types of operations:

• Write I/O Operation: This involves writing data objects to the scale-out storage.
The write operation can either create a new data object or update an existing one.
The object size corresponds to the stripe size of all incoming data. For instance,
when writing a file of size 16 MB, the client splits the file into smaller objects of
4 MB sizes, which are then written to the storage system. Different cloud storage
systems utilize different stripe sizes; specifically, the default stripe sizes are 4 MB
for Ceph, 1 MB for Lustre, and 64 KB for Gluster. This study employs Ceph
storage systems, which utilize a default object size of 4 MB.

• Read I/O Operation: This operation allows clients to read data stored in the
underlying storage system using some hash based location algorithm.

The size of the read/write (R/W) data object is configurable, and for the purposes of
this discussion, the object size is set to 4 MB, as shown in Figure 2.

· Dynamic Hash Table (DHT): The scale-out storage system employs dynamic hashing
to calculate the storage location for read and write operations [10,11,13,17,19,23,24].
The Dynamic hashing algorithm takes two inputs: the object ID and the number of
available servers (n) in the cluster. It computes the modulo operation to determine the
storage location for the I/O operation [objectID mod n]. This hashing process occurs
for both the read and write operations. The purpose of this first DHT algorithm is to
enable clients to locate the storage server for writing an object.

¸ Write-Ahead Log (WAL): To maintain consistency in write operations, conventional
storage systems adopt a Write-Ahead Log (WAL), which journals all incoming write
requests before they are committed to the storage system [23,25,26]. This journaling
mechanism is beneficial in cases where a write operation fails. If a failure occurs,
the system can restart the I/O operation from the WAL journal, ensuring strict consis-
tency in the storage system.

¹ Chunking and hashing on storage servers: Once a data object is written to its com-
puted storage server, the deduplication process begins. Prior deduplication solutions
adopt various chunking methods, either from variable or fixed-size hashing algo-
rithms to chunk the data object [4,27,28]. In this paper, we simplify the explanation
by using fixed-size chunking. The incoming data object is divided into fixed-size
chunks (1 MB chunks in this example, as shown in Figure 2). The chunk size is a
configurable parameter. A hash or fingerprinting process is then applied to compute
the hash values of each chunk. A duplicate check is performed against the existing
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deduplication metadata (Dedup MD). If a duplicate is found, the reference count in
the Dedup MD is incremented. New, unique chunks are directed to a secondary DHT
for final storage placement.

º Secondary DHT: For new, unique chunks (non-duplicates), a secondary dynamic
hashing algorithm is applied. This secondary dynamic hashing algorithm takes as
input the chunk ID and the number of available storage servers (n) and computes
the modulo operation to determine the final storage location of the chunks [chunkID
mod n]. The chunks are then redirected across the cluster network and stored on the
appropriate server. The purpose of this secondary DHT algorithm in hash based
deduplication storage systems [9–11,13,16] is to redirect the deduplicated chunks to
their final storage locations.

» Replication Placement Group (RPG): To ensure fault tolerance and enable intelligent
self-healing capabilities, the scale-out deduplication system adopts the concept of
Replication Placement Groups (RPGs) [9,10,13,16,23]. The RPGs are logical groupings
of object storage daemons, which manage the assignment of storage locations to
specific placement groups [17,24]. Each RPG is assigned a primary storage location
and, by default, two additional replication locations, as depicted in the Figure 2. When
data chunks are written to their designated primary storage servers, replicas of these
chunks are simultaneously written to the assigned replication locations in the RPGs.
Once all replicas are successfully stored, the system sends an acknowledgment to the
client, indicating the successful completion of the write operation.

2.1.1. Challenges in Conventional Deduplication Systems

As illustrated in Figures 1 and 2, the deduplication process introduces multiple in-
termediary steps that contribute to the degradation of the storage system’s overall perfor-
mance. These extra steps, while essential for identifying and eliminating duplicate data,
create additional overheads to the storage system. Next, we present the several challenges
presented by the implementation of the conventional deduplication systems in scale-out
storage systems.

¶ High Read/Write (R/W) latency: During read or write operations, additional
deduplication-related I/O tasks are invoked in the I/O path. Each R/W I/O operation
triggers these extra processes before the data objects can be written to or read from the
underlying storage cluster. This results in increased I/O latency, which can severely
impact performance, particularly for I/O-sensitive applications. Moreover, as dedu-
plication redirects the chunks to different storage locations, it breaks the locality of
the data [29]. Consequently, the overall system throughput is significantly reduced.

· Sub-optimal space efficiency: While conventional deduplication systems such
as [9,10,13,16,19,30] do achieve some degree of space savings, the default replication
mechanism hinders optimal storage space efficiency [30,31]. The write amplification
caused by chunk replication in the Replication Placement Groups (RPGs) for fault
tolerance leads to inefficiencies in regard to space savings [32]. For instance, writing a
4 MB data object to the storage cluster results in storing a total of 12 MB due to the
replication effect in the RPGs, assuming all chunks are new. This results in a worst-case
write amplification of 3×, which is not ideal for maximizing space efficiency.

¸ Increased Write Amplification Factor (WAF) in Write Operations: The use of WALs
can slow the performance of a system [25,26,33]. Adopting WAL journalling in
conventional deduplication systems leads to double write amplification. Writes are
buffered into a temporary storage device, such as an SSD-based WAL, which creates
a bottleneck in the I/O path. Data are first written to the WAL journal and then
subsequently flushed to process the deduplication steps. While the WAL maintains
consistency and ensures failure recovery in write operations, it comes with a significant
penalty in terms of overall I/O performance and increased write amplification.

¹ Strict consistency mechanism: Conventional deduplication systems adhere to a strict
consistency model, in which all write operations are first journaled and only ac-



Electronics 2024, 13, 4393 6 of 25

knowledged after all chunks are written and replicated in the RPGs. In the event
of a failure, the write operation is re-initiated from the WAL checkpoints until it
succeeds, after which the client receives an acknowledgment. The I/O operations
also enforces some strict consistency mechanism by locking the RPGs during simul-
taneous access [9,16,34]. While this strict consistency model ensures reliable data
integrity, it significantly impacts the performance of the storage system, leading to
delays and inefficiencies.

2.1.2. Motivation

This paper’s motive is to address the aforementioned limitations of conventional
deduplication systems in scale-out storage environments. Existing deduplication im-
plementations [9,10,13,16,19,30] inherit the structural inefficiencies of scale-out storage
systems, leading to challenges such as increased write amplification, strict consistency
overheads, and performance bottlenecks. Our work explores the implementation of new
deduplication strategies designed to mitigate these challenges. Specifically, we focus on the
following key areas:

• Reducing write amplification caused by RPGs: One of the major challenges in con-
ventional deduplication systems is the excessive write amplification caused by chunk
replication in RPGs [9,30]. To address this, we propose a solution called deduplicated
primary–semi-deduplicated replica. In this approach, the full deduplication is ap-
plied only to the primary data object, while the replica object is semi-deduplicated.
The proposed system writes the primary object to the storage cluster, replicates a
single replica object, and then deduplicates the primary object. The deduplicated
chunks are not replicated, reducing the overall write amplification. Fault tolerance
is handled by an asynchronous process that manages synchronization between the
deduplicated chunks and the semi-deduplicated replica, as discussed in detail in
Section 3.5. For example, in a conventional deduplication system, writing a 4 MB data
object could result in 12 MB being written to storage due to replication. In contrast,
our proposed system reduces this to a worst-case scenario of 8 MB (4 MB for the data
chunks and 4 MB for the semi-deduplicated replica).

• Replacing strong consistency with eventual consistency: The strong consistency
model used in conventional deduplication storage systems introduces significant
performance overhead, particularly in terms of latency and throughput. To improve
performance, we propose replacing the strong consistency model with an eventual
consistency model. This involves eliminating the use of Write-Ahead Log (WAL)
journaling. Instead, we adopt a binary flag-assisted consistency mechanism to manage
incoming write requests. A binary flag indicates the state of each write operation,
changing from “0” to “1” upon successful write to storage. If a write fails, the flag
remains with state “0”. Future write requests for duplicate data can eventually correct
the consistency by flipping the flag to “1”, indicating a successful write. If no future
duplicates are written, we adopt a periodic garbage collection thread [35] which
invalidates all objects and chunks with a flag status of “0”. This mechanism improves
system performance by avoiding the overhead of WAL journaling. We detail this
eventual consistency model in Section 3.4.1.

• Fault tolerance retention in proposed system: In our proposed system, we retain the
fault tolerance and self-healing capabilities of conventional deduplication systems
while introducing modifications meant to improve the deduplication system efficiency.
Specifically, we ensure that fault tolerance is achieved between the deduplicated pri-
mary object and the semi-deduplicated replica object through new mechanisms. If a
replica object becomes unreachable, a periodic Object Replica Check (ORC) thread is
initiated to rehash the primary object and store it at a new location in the cluster. Simi-
larly, if any chunk of the deduplicated primary object is unavailable, a periodic Chunk
Availability Check (CAC) thread synchronizes with the semi-deduplicated replica and
performs background chunking and hashing of the replica object. The background
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CAC resultant chunks are compared with the chunks of the deduplicated primary
object. Missing chunks are then rehashed and stored in a new location. Both the
ORC and CAC threads run periodically to ensure the availability and integrity of the
data. The full details of the fault tolerance retention through the ORC and ARC are
discussed in Section 3.5.

By focusing on the aforementioned three areas, we are motivated to propose improve-
ments to conventional deduplication storage systems. These enhancements are designed
to boost performance without compromising the system’s fault tolerance and self-healing
capabilities. Next, we present the architecture of our proposed system called Speed-Dedup.

3. Proposed Speed-Dedup Architecture
3.1. Aims and Objectives of Speed-Dedup Architecture

Our proposed deduplication architecture is a novel solution that has the following
aims and objectives.

• Aim #1: Accelerating I/O acknowledgments for improved latency: Our design aims
to amortize the overall deduplication I/O latency by utilizing the semi-deduplicated
replica object as the the target acknowledgment point for I/O operations. The rest of
the full deduplication processes proceeds in the background for the primary object.
In this way, latency is significantly improved. This is achieved by introducing the
deduplicated primary–semi-deduplicated replica approach explained in Section 3.2.1.

• Aim #2: Optimization of deduplication storage efficiency: Our system aims to re-
duce the overall storage footprint of data objects by (i) minimizing RPG object replica-
tion, (ii) applying full deduplication exclusively to the primary object, (iii) disabling
deduplicated chunks of the primary object from replication, and (iv) disabling repli-
cation on the semi-deduplicated replica object. This approach further optimizes the
storage efficiency of the deduplication system. Fault tolerance is then managed by
synchronizing between the deduplicated primary chunks and the semi-deduplicated
replica object, as described in Section 3.2.2.

• Aim #3: Incremental improvement in recovery time with increased storage failures:
To support the modifications in the deduplication system, we aim to implement
specialized fault tolerance and data recovery mechanisms that are tightly integrated
into our proposed framework. We introduce two new mechanisms, Object Replica
Check (ORC) and Chunk Availability Check (CAC), detailed in Section 3.5, that
handle fault tolerance and data recovery processes. These techniques are designed to
incrementally improve data recovery times as storage node failures increase, offering
enhanced performance compared to other state-of-the-art solutions.

Speed-Dedup introduces a unique approach that implements deduplication using a
deduplicated primary and a semi-deduplicated replica object, distinguishing it from prior
solutions that rely on fully deduplicating primary objects before invoking the replicas of the
deduplicated object chunks. This novel deduplication design not only boosts performance
but also substantially reduces write amplification, marking a significant advancement in
deduplication technology. Additionally, we present new fault tolerance and data recovery
mechanisms that speed up fault detection and recovery time, further enhancing system
resilience and efficiency. Next, we discuss the details of our proposed solution.

3.2. System Architecture

The design of our proposed Speed-Dedup system addresses the limitations of con-
ventional deduplication approaches in scale-out storage environments. To achieve the
desired goals of improved performance and fault tolerance, we modify the conventional
deduplication architecture to create a more efficient and resilient system. Below, we outline
the key components of this design. Figure 3 presents the architectural diagram of the
proposed Speed-Dedup system.



Electronics 2024, 13, 4393 8 of 25

Server # 1Server # 2
C2

DM
Shard

Server # 1Server # 3
C3

DM
Shard

Server # 1Server # 4
C4

DM
Shard

Server # 1

C1

DM
Shard

Client

Write 4MB 
object

DHT Server #  1
primary
objecthash(objectID mod n)

C1 C2 C3 C4

Fixed sized chunks (1MB)

hash(chunkID mod n)

Client

Object_MAP
obj_ID objhash cnk_List Flag

Bar 0b01 0b02,0b05 ... 1

Chunk Info Table
Chkhash Ref_Cnt Flag

0b01 1 0

DM-SHARD

DM
Shard

Server # 1Server # 5
replica
object DM

Shard

Text 1

2 Deduplicated primary

semi-deduplicated replica
Replication
Placement

Group

Secondary DHT Obj_RefCnt

2

Figure 3. Proposed Speed-Dedup design.

3.2.1. Deduplicated Primary–Semi-Deduplicated Replica Model

The central feature of our design is the deduplicated primary–semi-deduplicated
replica model. This model streamlines the deduplication process while maintaining data
reliability and fault tolerance. The process is broken down into two main parts:

¶ Single semi-deduplicated replica of primary object across RPGs: For fault toler-
ance, we only replicate the primary object with a replication factor of two, meaning
that each data object has a primary copy and a replica. Each RPG consists of a primary
storage location and a designated replica location. Once the primary object is written
to its assigned primary location, a replica is automatically generated and stored at the
secondary location. In the case of duplicate replica object, the duplicate is not repli-
cated, but rather object reference count is incremented in the Object MAP of the DM-
Shard, enforcing the concept of semi-deduplicated replica. The semi-deduplication
is in the sense that duplicate objects are referenced to already stored replica objects
but do not undergo the full process of deduplication (chunking, hashing, and chunk
redirection for storage).

· Full deduplication of only the primary object: In this model, only the primary
data object undergoes the deduplication process. This includes chunking the object
into smaller data chunks, hashing each chunk, and performing duplicate checks.
To manage deduplication metadata, we implement a distributed partitioning method
called Deduplication Metadata Sharding (DM-Shard), as inspired by the work in [10].
In the DM-Shards, metadata for both duplicate chunks and new, unique chunks are
stored and updated. The new chunks are then passed through a secondary dynamic
hashing algorithm to determine their final storage locations. Unlike conventional
systems, our design does not replicate the deduplicated chunks of the primary object.
While this approach reduces write amplification, it introduces the potential of lack
of fault tolerance. To address this, we implement additional fault tolerance and
self-healing mechanisms, which are discussed in detail in Section 3.5.

¸ Structure and processes of the DM-Shard: The DM-Shard is a distributed metadata
management strategy that partitions the deduplication metadata across multiple
servers to optimize scalability and performance in a scale-out storage system. The de-
sign leverages a hash-based data placement to automate the process of distributing
metadata across different storage nodes. Below, we outline the key processes and
structure of the DM-Shard.
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• Distributed metadata partitioning: When a client writes an object to storage,
a Dynamic Hash Table (DHT) algorithm is employed to determine the spe-
cific server responsible for handling the write request. Once the data reach the
assigned storage server, they undergoes two primary operations: (i) Replica-
tion within the Replication Placement Group (RPG) for fault tolerance (semi-
deduplicated replica); (ii) Deduplication of primary objects to identify and store
only unique data chunks.

• Object mapping table (Object MAP): During the deduplication process, the meta-
data of the incoming objects is stored in the Object Mapping Table (Object MAP),
which is part of the DM-Shard. The Object MAP records all the essential infor-
mation required to reconstruct the deduplicated object, including the follow-
ing: Object ID (obj_ID)—A unique identifier for the object; Object Hash Value
(objhash)—Hash value for the entire object; Chunk List (cnk_List)—A list of
the deduplicated object’s chunk hashes; Object reference count (obj_RefCont),
which stores the reference counts of the semi-deduplicated replicas; and a Binary
Flag, which indicates whether the object, along with all its chunks, is successfully
written to storage. It also reflects the status of the replica. The flag is initially set
to “0” and is flipped to “1” once both the deduplicated primary object and its
semi-deduplicated replica are successfully written.

• Chunk Information Table (CIT): For the deduplicated primary object, each
chunk undergoes a secondary DHT algorithm to calculate its final placement
location in the storage system. Once the chunk reaches its designated storage
location, its metadata are recorded in the Chunk Information Table (CIT) within
the DM-Shard. The CIT contains critical chunk-level information, including
chunk IDs, chunk hash values, and a consistent flag. Upon successfully writing
the chunks to their storage locations, the flag in the CIT is flipped from “0” to “1”.

Figure 3, bottom right, illustrates the structure of the DM-Shard, showing how both
object-level and chunk-level metadata are managed and distributed across the system. This
distributed approach ensures scalability and efficient handling of deduplication metadata
in scale-out storage systems.

3.2.2. Modified Replication Placement Group

In our proposed Speed-Dedup system, the Replication Placement Group mechanism
is specifically applied between primary objects and their replica objects. This targeted
approach optimizes the replication process by focusing solely on these two object types,
which reduces overall system overhead and write amplification while still maintaining
necessary fault tolerance and data reliability.

¶ Replication process: When a client writes a primary object to the storage system,
a replication thread is invoked immediately after the primary object is written to its
designated primary storage location. This thread replicates the object to a secondary
storage location, known as the replica location, which is dynamically determined by
the storage system’s RPG mechanism [17,24]. This replica location can be any storage
node assigned to a primary node by the RPG computation algorithm, such as the
CRUSH algorithm. In our design, we enforce a replication factor of two, meaning
each data object has exactly one primary copy and one replica. This simplifies the
replication process compared to the conventional deduplication systems with higher
replication factors, reducing both storage requirements and the potential for excessive
write amplification.

· Dynamic RPG calculation and self-healing: Rather than introducing new algorithms
for RPG computation [36,37], Speed-Dedup leverages the built-in dynamic capabilities
of the distributed file system’s RPG computation algorithm, such as Ceph’s CRUSH
algorithm [17]. This algorithm automatically calculates and assigns RPGs based on
the available storage locations in the cluster, determining the optimal placement of
primary and replica objects. If a storage location becomes unavailable due to failure



Electronics 2024, 13, 4393 10 of 25

or other issues, the system automatically recalculates and adjusts the RPGs. This
allows for the seamless reallocation of the replica to a new, healthy storage node,
ensuring the continued availability and redundancy of data. For example, if a storage
node hosting a replica object fails, the system dynamically reassesses the cluster’s
available storage nodes and identifies new placement locations. This allows for an
efficient self-healing process without the need for manual intervention, preserving
data integrity and minimizing downtime.

¸ Optimization of performance and fault tolerance with the Modified RPGs: By lim-
iting replication to just one primary and one replica, Speed-Dedup achieves a balance
between performance and fault tolerance. The replication factor of two ensures that
data remain redundant and protected against failures while minimizing the storage
overhead and I/O workload associated with higher replication factors. This controlled
replication approach, combined with the system’s ability to dynamically reallocate
RPGs in the event of failures, ensures the fault tolerance features of conventional scale-
out storage systems whilst also significantly reducing the write amplification and
overhead typically associated with traditional deduplication processes. It achieves
these benefits by limiting replication and allowing the system to dynamically adapt to
changes in cluster availability, ensuring high performance and data reliability.

3.3. Decoupling of Read and Write (R/W) Operations

As illustrated in Figure 3, our proposed system stores two types of objects for each data
write: (i) A semi-deduplicated replica object and (ii) the data chunks of the deduplicated
primary object. This deduplicated primary–semi-deduplicated replica model allows us to
decouple the read operations from write updates after the initial object write, significantly
improving performance.

• Read operation: In our design, all read operations are served via the semi-deduplicated
replica object, ensuring non-blocking access to data even during write updates. In tra-
ditional deduplication systems, read operations issued during an object write update
are often blocked. This happens because the system locks the RPG (Replication Place-
ment Group) to prevent simultaneous read and write I/O operations on the same
object, maintaining strong consistency but at the cost of I/O performance degrada-
tion. To overcome this limitation, Speed-Dedup implements a non-blocking read I/O
thread. This thread is invoked through the semi-deduplicated replica object, allowing
read operations to proceed independently from ongoing write updates to the primary
object. By separating the replica from the deduplication process, we ensure faster and
more efficient read operations, improving the overall responsiveness of the system.

• Write update operation: The write update operation is handled through the dedu-
plicated primary object. When a write update is triggered, the system retrieves the
relevant data chunks using metadata stored in the MD-Shards, such as the object ID
(obj_ID), object hash (objhash), and the chunk list (chkList). If the object requiring the
update exists, the updated object undergoes the following processes. Chunking: The
updated object is divided into chunks. Hashing: Each chunk is hashed via the hashing
algorithm. Duplicate checks: The system verifies whether the updated chunks already
exist in storage. For any new chunks, the system hashes them to their final storage
locations, updating the metadata in the MD-Shards accordingly. The old metadata
records of the object are then invalidated to reflect the update.

• Addressing inconsistencies between primary and replica objects: A potential chal-
lenge of this decoupled R/W model is the risk of inconsistencies between the dedu-
plicated primary object and the semi-deduplicated replica object. Since the write
update is applied only to the primary object, the replica may not immediately reflect
the changes made to the primary object. To resolve this, we implement a periodic
replication thread that runs in the background. This thread periodically reconciles the
primary object with its replica by replicating the updated data from the deduplicated
primary object to the semi-deduplicated replica and invalidating the old replica copy
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to ensure that the replica is always up to date with the primary object. This periodic
synchronization ensures that the system maintains consistency between the primary
and replica objects without sacrificing the performance benefits of decoupled read and
write operations.

By decoupling the read and write processes in this manner, our system significantly
improves I/O performance and scalability while still preserving data consistency.

3.4. Write and Read I/O Acknowledgement

In our proposed Speed-Dedup system, when data objects are written to the storage
system, the data are first replicated to a semi-deduplicated replica. Upon successfully
writing this replica to storage, the client receives an immediate I/O acknowledgment.
The deduplication process for the primary object continues in the background. This
approach ensures improved I/O latency and overall performance, as the client does not
have to wait for the entire deduplication process to complete before receiving confirmation
of the write operation. In contrast, conventional deduplication systems like in [9,10] fully
deduplicate incoming data objects before issuing an acknowledgment to the client. These
systems wait for the object chunks to be redirected to their final storage locations, resulting
in a longer delay before the client receives an acknowledgment for the write operation.

For read operations, Speed-Dedup serves all reads from the semi-deduplicated replica
object, which operates independently of the write updates that are served by the dedu-
plicated primary object. This decoupling ensures faster read performance, as the client
reads directly from the replica without needing to wait for the deduplicated data to be
reconstructed. In contrast, conventional deduplication systems serve read operations via
the same deduplication I/O path, requiring the system to first reconstruct the deduplicated
object before responding to the client’s read request. This adds additional latency to read
operations. By utilizing this approach, Speed-Dedup achieves enhanced deduplication
performance while reducing latency for both write and read I/O operations.

3.4.1. Eventual Consistency Model Implementation

Another objective of our proposed Speed-Dedup system is to enhance performance by
replacing the strong consistency model traditionally employed in conventional deduplica-
tion storage systems with an eventual consistency model. The strong consistency model
enforces blocking I/O operations, and also the client receives an acknowledgment only
after the entire data object is successfully written and replicated across the storage system.
This approach, while ensuring reliability, results in high latency and reduced throughput,
making it suboptimal for large-scale or I/O-sensitive environments. In our proposed sys-
tem, we implement an eventual consistency model via a flag-ssisted consistency mechanism
embedded in the DM-Shard.

¶ Flag-sssisted consistency mechanism: To achieve eventual consistency, we adapt a
flag-assisted consistency model in [10]. The consistency model relies on a binary
consistency flag to monitor the status of an object’s commit to storage. Each object and
its deduplicated chunks are associated with metadata, including a consistency flag
that reflects the success or failure of storage commit operations. When a client write
data objects to the proposed deduplication enabled storage, the following metadata
management and object storage process for eventual consistency are invoked:

• The object is first hashed to identify its initial storage location;
• In this initial location, the object undergoes replication across its RPG, ensuring

redundancy, and the primary object is also chunked and hashed as part of the
deduplication process;

• The system then updates the Object MAP table with relevant metadata for the
object, including the object ID (obj_ID), object hash (objhash), chunk list (chkList),
and a consistency flag. This flag is initially set to “0” and is changed to “1” only
after a successful commit of both the replica object and all deduplicated chunks;
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• The deduplicated chunks are then processed through a secondary hashing algo-
rithm, which calculates their final storage locations;

• Upon arrival at the final storage location, the Chunk Information Table (CIT)
of the DM-Shard is updated with chunk metadata, including chunk hashes,
reference counts, and consistency flags. Similar to the Object MAP table, the con-
sistency flag in the CIT is initialized to “0” and flips to “1” upon a successful
commit to storage of the data chunk.

· Eventual consistency flag commit: In an eventual consistency model, even if a chunk
fails to write successfully to storage, the consistency flag remains at status “0”, and the
reference count of the chunk is not incremented, creating a temporary inconsistency
in the system.

• Handling inconsistencies with duplicate data: Our system resolves inconsis-
tencies by leveraging future data writes. If a duplicate data chunk (matching
an earlier failed chunk) is written to the system at any point, the consistency
flag in the CIT is updated from “0” to “1”, and the reference count for the chunk
is incremented. This mechanism allows the system to self-heal by correcting
inconsistencies over time as duplicate data naturally enters the system.

• Garbage collection for inconsistent chunks: In the worst-case scenario where
no future duplicate chunk is written to the system, a periodic garbage collection
thread scans through the storage system. It invalidates any objects or chunks
with a consistency flag still set to “0”, thereby ensuring that inconsistent or
incomplete data are removed. This thread prevents long-term accumulation of
inconsistent data and maintains the integrity of the storage system.

Adopting this eventual consistency model with flag-assisted consistency mechanism
ensures that data reliability is eventually achieved without imposing the high performance
costs associated with strict consistency models.

3.5. Fault Tolerance Handling in the Proposed System

To address the fault tolerance changes made to the conventional deduplication system,
our Speed-Dedup design includes new fault tolerance mechanisms aimed at preserving the
fault tolerance and self-healing capabilities of scale-out storage systems. As described previ-
ously, our system adopts a deduplicated primary–semi-deduplicated replica model, where
only the replica object is replicated and deduplicated chunks of the primary object are not
replicated. This approach reduces the overall write amplification caused by replication in
traditional deduplication systems. Despite reducing the replication overhead, maintaining
one copy of the deduplicated data chunk and one copy of the replica object introduces
challenges for fault tolerance. To mitigate these challenges, we introduce two periodic
background threads that handle fault detection and recovery: (i) the Object Replication
Check (ORC) thread and (ii) the Chunk Availability Check (CAC) thread.

The fault tolerance mechanisms in Speed-Dedup are designed to operate periodically
in the background of each storage server, ensuring minimal disruption to ongoing I/O
operations. The ORC and CAC threads run in parallel, which is crucial for reducing
interference with foreground I/O processes. This parallel execution allows the system to
maintain high performance while continuously monitoring the availability and integrity
of both the replica object and primary object chunks. Specifically, the ORC thread is
responsible for verifying the availability of replica objects, while the CAC thread monitors
the consistency of the deduplicated chunks of the primary object. By implementing these
background threads, Speed-Dedup effectively enhances its fault tolerance capabilities
without compromising the responsiveness of the system to client requests. Next, we
explain how these two threads ensure fault tolerance and data integrity through continuous
monitoring and corrective actions.

¶ Object Replication Check (ORC) thread: The ORC thread is designed to verify the
availability of replica objects and runs periodically in the background. The primary
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purpose of the ORC thread is to ensure that the replica object is still accessible and
valid. Figure 4 illustrates the fault tolerance mechanism implemented by the ORC
thread. The ORC thread periodically pings the replica object location. If the replica
location is reachable, it issues an objhash.getattr() query to check whether the actual
replica object is physically stored at that location. If the query returns a success
message, the replica object is confirmed to be intact. However, if the location is
unreachable or the objhash.getattr() query returns an error, the ORC thread initiates
failure recovery operations to reconstruct and restore the replica object. Next, we
explain the two failure scenarios for the ORC thread.

Case #1: Replica object location not reachable.

• In this scenario, the distributed storage system automatically recalculates the new
Replica Placement Groups (RPGs) (Step 1 in Figure 4).

• Next, the ORC thread retrieves metadata about the failed replica from the Object MAP
of the primary object, locates the object chunks using the secondary DHT algorithm
(Step 2), and reconstructs the primary object based on these data (Step 3).

• The reconstructed primary object is then replicated to a new replica location in the
updated RPG (Step 4).

Case #2: Replica location is reachable, but objhash.getattr() returns error.

• This means that the replica object may be corrupted.
• In this case, the ORC thread reconstructs the primary object (Step 2—Figure 4) and

replicates the reconstructed primary object onto the current RPG location, that is,
Server #5 in Step 4b in Figure 4.

By employing this approach, the ORC thread maintains fault tolerance through contin-
uous synchronization between the primary object chunks and the semi-deduplicated replica.
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Figure 4. Fault tolerance using Object Replica Check (ORC) thread. Top red X means a faulty
replication node and bottom means faulty replica object.
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· Chunk Availability Check (CAC) thread: Figure 5 illustrates the fault tolerance
mechanism implemented by the CAC thread. The CAC thread is responsible for
monitoring the availability and consistency of the deduplicated chunks of the primary
object. Like the ORC thread, the CAC thread runs periodically and ensures the
integrity of chunks stored in the system. The CAC thread monitors the fault tolerant
levels using two hiarachical operations: (i) Pinging the storage location of the chunk
and checking whether it is reachable, and (ii) if the location is reachable, verification
of the physical presence of the chunks using the cnkhash.getattr() query. If the query
returns success, the chunk is confirmed to be available. The CAC thread also manages
two failure scenarios: (i) when the chunk location is not reachable and (ii) when the
chunk location is reachable but the cnkhash.getattr() query returns an error. We proceed
to discuss the two failure scenarios for the CAC thread.
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Figure 5. Fault tolerance using Chunk Availability Check (CAC) thread. Red X means an unreach-
able chunk.

Case #1: Chunk location not reachable.

• The CAC thread first performs a shadow deduplication process on the replica object,
Step 1 in Figure 5;

• It then compares the chunk hashes obtained from the shadow deduplication process
of the replica with those in the Object MAP of the primary object (Step 2). If any chunk
hashes match those stored in reachable locations, the matching chunks are discarded;

• For matching chunks that are not reachable, the CAC thread rehashes the new chunk
location and copies the unreachable chunk from the shadow deduplication to the
newly identified storage location (Step 3).
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Case #2: Chunk location reachable, but cnkhash.getattr() returns error.

• This scenario indicates that the chunk may be corrupted. In this case, the CAC thread
updates the Chunk Information Table (CIT) by changing the flag for the corrupted
chunk to “0” and decrements the reference count, Step 0 in Figure 5;

• The CAC thread then proceeds with shadow deduplication on the replica object
(Step 1);

• Next, CAC compares the chunk hashes from the shadow deduplication with the
corrupted chunk hash in the CIT table. If a match is found, the shadow deduplicated
chunk is copied into the original storage location, the reference count is incremented,
and the flag status in the CIT is reset to “1” (Step 3b).

By implementing these two background threads, ORC and CAC, our proposed Speed-
Dedup ensures automatic fault tolerance and intelligent self-healing. The periodic checks
performed by these threads allow the system to detect and recover from both replica and
chunk failures without requiring manual intervention. This design maintains the resilience
of the proposed deduplication system while reducing the overhead typically associated
with redundant replication in conventional models.

4. Evaluation

We implemented our proposed Speed-Dedup solution on Ceph version 15.2.17, a
widely used distributed storage platform. To evaluate the performance of our system,
we conducted a comparative analysis against two state-of-the-art deduplication solutions:
GRATE [10] and CAO [9]. Both GRATE and CAO were integrated into the same Ceph
version by copying their binaries to ensure a consistent evaluation environment. To stan-
dardize the comparison across all systems, we adopted a fixed chunking approach for all
three solutions: our proposed Speed-Dedup, GRATE, and CAO. For efficient data distribu-
tion and rehashing, we adopted the CRUSH algorithm [17] (Ceph’s native data placement
algorithm) as both the primary DHT algorithm and the secondary DHT algorithm. This
approach optimizes the intelligent rehashing of Replica Placement Groups (RPGs) within
the storage cluster.

As previously discussed in Section 3.5, our system maintains fault tolerance differently
compared to other conventional deduplication systems. Speed-Dedup only stores one
copy of each data chunk (from the deduplicated primary object) and one copy of a semi-
deduplicated replica object. In this scenario, if either the deduplicated primary object or its
semi-deduplicated replica fails, the built-in Ceph recovery mechanisms cannot recover the
data. Therefore, fault tolerance in our system is achieved through the Object Replication
Check (ORC) and Chunk Availability Check (CAC) mechanisms, which were outlined in
Section 3.5. In contrast, for both GRATE and CAO deduplication systems, fault tolerance is
managed via the built-in Ceph recovery mechanisms. These mechanisms rely on replicating
multiple copies of data across the cluster, ensuring data redundancy and automatic recovery
in the event of a failure.

4.1. Testbed and Experimental Setup

For our evaluation, we deployed a Ceph storage cluster using AWS EC2 instances [38]
consisting of eight storage servers. Each server is equipped with 2 × 512 GB SSDs, con-
figured as object storage daemons (OSDs), providing a unified storage capacity of 8 TB
across the cluster. Additionally, we deployed a single node that serves a dual role as both
the Ceph cluster management node and the client node. Table 1 presents the specifications
of each server in the Ceph cluster.
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Table 1. Testbed specifications for the deployed Ceph cluster. Storage nodes (left) and cluster
management also used as client node (right).

Storage Nodes Management/Client Node

Atrribute Description Atrribute Description

EC2 VM Type c5.2xlarge: 8 vCPUs;
×86_64 arch; 16 GB RAM EC2 VM Type c5.2xlarge: 8 vCPUs;

×86_64 arch; 16 GB RAM

VM Image Ubuntu Server 22.04 VM Image Ubuntu Server 22.04

Storage Type SSDs = 2 × 512 GB
per server Storage Type Used for hosting OS and Ceph

manager services only

Number of
storage servers

Total 8 servers in
the storage cluster Object Size 4 MB

To simulate real-world workloads and generate I/O requests (reads and writes), we
used the FIO benchmark tool [39] at the Ceph client node. This tool allows us to test
the storage system by generating synthetic deduplication workloads under various I/O
parameters and conditions. All incoming write I/O requests were segmented into 4 MB
object sizes at the Ceph client. We created and mounted a rados block device (RBD) at the
Ceph client node, and the client directs all its I/Os via this RBD. An example of the FIO
command that we executed in our experiment is as follows:

fio --name speed-dedup.fio --dedupe --dedupe_percentage=20
--filename=/dev/rbd0 --ioengine=rbd --rw=write --size=6291456MB
--iodepth=128 --bs=4096 --numjobs=1

where

• –name speed-dedup.fio: Sets the name of the job. This name helps to identify the
results in the output logs.

• –dedupe: Enables deduplication, which allows fio to use deduplication patterns in the
data it writes. This is useful for simulating workloads that include deduplicated data.

• –dedupe_percentage=20: Sets the percentage of data that are deduplicated. Here,
20 means 20% data is deduplicated (20% duplicate content).

• –filename=/dev/rbd0: Specifies the target file or device for the workload. In this case,
it is the rbd (RADOS block device) device located at /dev/rbd0.

• –ioengine=rbd: Chooses the I/O engine. Here, rbd is specified, meaning it uses the
RADOS Block Device (often associated with Ceph) as the I/O engine.

• –rw=write: Sets the I/O pattern. Here, write means it performs sequential write
operations.

• –size=6,291,456 MB: Defines the total data size for the job. Here, it writes a total of
6 TB.

• –iodepth=128: Sets the I/O depth, which is the number of I/O requests that can be in
flight at the same time. Higher values can increase concurrency, making it useful for
testing storage performance under load.

• –bs=4096: Sets the block size (in this case, 4 MB) for each I/O operation.
• –numjobs=1: Specifies the number of jobs to run in parallel. Here, it is set to one, so

only a single job is executed.

The FIO benchmark tool enables us to test the storage performance under various
configurations. For example, we can vary the dedupe_percentage, I/O pattern (sequential,
reads, sequential writes, random reads, random writes), size of data to be generated
and written to storage, etc. We performed a comparative analysis of the following three
deduplication approaches using this testbed setup:

¶ Speed-Dedup: Our proposed deduplication solution, which deduplicates only the
primary object and stores a semi-deduplicated replica for fault tolerance.
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· GRATE [10]: This approach also uses a distributed metadata sharding technique,
similar to our proposed solution. However, GRATE deduplicates and replicates
all new chunks across the storage cluster, unlike our system which stores a semi-
deduplicated replica object and only one copy of each chunk.

¸ CAO [9]: In the CAO approach, deduplication is implemented through content-
addressable objects. Related deduplication metadata are stored within the extended
attributes of each deduplicated object, meaning that all deduplication metadata up-
dates are embedded directly within the object’s extended attributes [9,16].

4.2. Performance Evaluation

In this Section, we benchmark the performance of Speed-Dedup with various varying
performance configurations.

¶ Performance with varying chunk sizes: Figure 6a shows the performance of Speed-
Dedup, GRATE, and CAO when the chunk sizes of objects written to storage are
varied. In this test, the deduplication ratio was set to 20%. We observed that across
all systems, as chunk size increases, performance improves due to the reduced over-
head of managing larger chunks and less I/Os. However, Speed-Dedup consistently
demonstrates superior performance compared to GRATE and CAO, especially with
larger chunk sizes.

The main reason for this performance boost is that Speed-Dedup minimizes write
amplification, which means fewer I/O operations are required to write the same amount
of data. This increases throughput, as more data can be written in less time. Additionally,
Speed-Dedup decouples the read and write I/O processes. This enforces non-blocking
read operations, further increasing the system performance. In contrast, GRATE and CAO
implements blocking W/R I/O operations, which introduces more overhead in handling
reads and writes simultaneously.

· Performance with varying deduplication ratio: We further evaluated the perfor-
mance of the proposed Speed-Dedup approach by benchmarking it against vary-
ing deduplication ratios of written data to the storage cluster. In this experiment,
the chunk size was fixed at 256 KB, while the deduplication ratio was varied between
80% and 20%. The results of this experiment are illustrated in Figure 6b.

Theoretically, performance is expected to increase as the deduplication ratio increases,
since a lower deduplication ratio indicates fewer duplicate data in the incoming workload.
Conversely, a higher deduplication ratio implies more duplicates, which reduces the
amount of data commits to storage. In the FIO benchmark tool, the deduplication ratio
is expressed as a percentage, where a higher percentage reflects a lower deduplication
ratio (e.g., 80% deduplication ratio corresponds to 80% unique data and 20% duplicates),
while a lower percentage reflects a higher deduplication ratio (e.g., 20% deduplication ratio
corresponds to 20% unique data and 80% duplicates).

From the results presented in Figure 6b, we observed that performance improves across
all approaches as the deduplication ratio increases. Notably, Speed-Dedup demonstrates the
highest performance gains, particularly when the deduplication ratio is towards the lower
bound (80% unique data). At this low deduplication ratio, Speed-Dedup outperforms both
GRATE and CAO by at least 21%. This performance advantage is due to Speed-Dedup’s
efficient handling of large volumes of new data, as it writes significantly less data to storage.
Speed-Dedup stores only one replica object with fewer deduplicated chunks, whereas
GRATE and CAO amplify write operations by writing each chunk of new data to storage
and replicating it across multiple nodes within a RPGs for fault tolerance.

¸ Latency with varying chunk sizes: We conducted an evaluation of the latency
performance of the three approaches, Speed-Dedup, GRATE, and CAO by fixing the
deduplication ratio at 20% and varying the chunk sizes. The results of this experiment
are illustrated in Figure 6c. We observed a similar performance trend for all three
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approaches, with latency improving as chunk sizes increase. However, Speed-Dedup
consistently outperforms both GRATE and CAO in terms of latency.

The key advantage of Speed-Dedup lies in its ability to acknowledge the client as soon
as all the chunks of the primary object are written to storage, allowing the deduplication
of object chunks to continue in the background. This delayed deduplication process
ensures eventual consistency while reducing the time it takes for the client to receive an
acknowledgment. As a result, Speed-Dedup demonstrates a reduction in latency of more
than 100% compared to GRATE and CAO.
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Figure 6. Performance analysis of proposed model.

In contrast, CAO waits until the entire deduplication process is completed before
sending an acknowledgment to the client, leading to higher latency. However, in GRATE,
the client receives an acknowledgement as soon as the chunks are written to the CIT
table, meaning GRATE also uses an eventual consistency model. Nevertheless, the object
has to undergo the deduplication processes of chunking hashing and I/O redirection
to final storage location first before client acknowledgement. This results in a higher
number of I/O operations before the client receives an acknowledgment in GRATE and
CAO compared to Speed-Dedup, which minimizes these operations and therefore exhibits
superior latency performance.

¹ Evaluating IOPS with Random and Sequential I/Os: To evaluate the resilience of the
proposed Speed-Dedup approach, we analyzed the I/O operations per second (IOPS)
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and compared its performance with the GRATE and CAO deduplication methods.
The results of this evaluation are presented in Figure 7.
Random I/O Performance: We first examined the IOPS by issuing random I/O re-
quests from the Ceph client while varying the chunk size between 64 KB and 256 KB.
The results are shown in Figure 7a. For both random reads and random writes,
we observed a general increase in performance across all approaches as the chunk
size increases. However, Speed-Dedup demonstrates superior performance in both
random write and read operations compared to GRATE and CAO. The key reason
for this improvement is that, during write operations, Speed-Dedup sends a write
acknowledgment to the client as soon as the semi-deduplicated replica is committed
to storage. In contrast, with read operations, Speed-Dedup decouples the read I/O
from the write operations, resulting in enhanced overall performance.
Sequential I/O Performance: For sequential I/O operations, as depicted in Figure 7b,
Speed-Dedup exhibits a significantly higher performance compared to GRATE and
CAO. This improvement is attributed to the enhanced locality characteristics of Speed-
Dedup during write operations. In Speed-Dedup, the IOPS for sequential writes are
measured based on the commit to storage of the semi-deduplicated replica object.
Since this replica object is not deduplicated, the locality of reference is maintained,
allowing sequential I/O requests to retain their ordered nature. On the other hand,
with GRATE and CAO, IOPS are measured only after the chunks are fully dedupli-
cated and redirected to their respective storage locations. This redirection changes the
sequential write and read operations into random I/O patterns, disrupting the locality
of reference and leading to reduced performance. As a result, Figure 7b highlights the
substantial performance gap in favor of Speed-Dedup for both sequential reads and
sequential writes compared to GRATE and CAO, underscoring Speed-Dedup’s ability
to maintain higher IOPS in sequential I/O scenarios.
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Figure 7. Evaluation of random and sequential client I/O requests with varying chunk sizes.

4.3. Write Amplification Evaluation

In this experiment, we evaluated the I/O write amplification of the three different
deduplication methods: the proposed Speed-Dedup, GRATE, and CAO deduplication
techniques. The chunk size is fixed at 256 KB throughout the experiment. Table 2 presents
the results of this comparative analysis. To benchmark the write amplification, a total of
6 TB of data is written to the storage system by the client, and performance is analyzed
under two conditions:

• Lower-bound deduplication ratio (20%): 80% of the data is duplicate;
• Upper-bound deduplication ratio (80%): 20% of the data is duplicate.
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Table 2. Comparison of I/O write amplification of the proposed approach vs GRATE and CAO
dedup methods. Green means optimal values and red means non-optimal values.

Total Data Written
from Client

Total Duplicate
Data

Total Objects
Written to Storage

Total Chunks
Written to Storage

Total Replica Objects
Written to Storage

Final Data
Saved in Storage

Speed-Dedup 20%
Dedup Ratio

6 TB 1.2 TB 314,573 5,033,168 314,573 2.4 TB

GRATE 20%
dedup ratio

6 TB 1.2 TB 314,573 15,099,504 0 3.6 TB

CAO 20%
dedup ratio

6 TB 1.2 TB 314,573 15,099,504 0 3.6 TB

Speed-Dedup 80%
dedup ratio

6 TB 4.8 TB 1,258,292 20,132,672 1,258,292 9.6 TB

GRATE 80%
dedup ratio

6 TB 4.8 TB 1,258,292 60,398,016 0 14.4 TB

CAO 80%
dedup ratio

6 TB 4.8 TB 1,258,292 60,398,016 0 14.4 TB

When 6 TB of data was written with the lower deduplication ratio (20%), all ap-
proaches wrote 1.2 TB of duplicate objects to storage, equivalent to 314,573 data objects.
With the upper bound deduplication ratio (80%), 4.8 TB of duplicate data was written by all
approaches, totaling 1,258,298 data objects. However, the total number of chunks written
to storage differed significantly between the approaches.

At the lower bound deduplication ratio (20%), Speed-Dedup wrote 5,033,168 chunks to
storage, while both GRATE and CAO wrote 15,099,504 chunks. At the upper bound dedupli-
cation ratio (80%), Speed-Dedup wrote 20,132,672 chunks compared to 60,398,016 chunks
for GRATE and CAO. These results indicate that the proposed Speed-Dedup approach
has a lower write amplification. The key difference is that Speed-Dedup writes only one
replica object for each primary object; all deduplicated primary object chunks are not
replicated. However, GRATE and CAO fully deduplicate the incoming objects and replicate
the deduplicated chunks by a factor of three, which amplifies the writes to storage.

The results in Table 2 reveal the following:

• At the lower bound (20% deduplication ratio), Speed-Dedup wrote 2.4 TB of data
to storage (314,573 replica objects [4 MB each] and 5,033,168 deduplicated chunks
[256 KB each]) compared to 3.6 TB for GRATE and CAO (5,033,168 chunks replicated
by a factor of 3 = 15,099,504 chunks of 256 KB each).

• At the upper bound (80% deduplication ratio), Speed-Dedup wrote 9.6 TB
(1,258,292 replica objects [4 MB each] and 20,132,672 deduplicated chunks [256 KB
each]) to storage, while GRATE and CAO wrote 14.4 TB (20,132,672 replicated by a
factor of 3 = 60,398,016 replicated chunks of size 256 KB each).

This write amplification experiment points to the following important insights:

¶ Storage efficiency: Speed-Dedup demonstrates significantly better storage efficiency
compared to GRATE and CAO. At both low and high deduplication ratios, it writes
less data to storage, thereby utilizing storage space more effectively.

· Write amplification: Speed-Dedup exhibits lower write amplification, as it writes
fewer chunks and replica objects. This reduction in write amplification is essential for
optimizing I/O operations and improving performance.

¸ Scalability: The scalability of Speed-Dedup with growing sizes of data sets is ex-
hibited by its ability to maintain lower storage requirements as the deduplication
ratio increases as indicated in Table 2. These results show a much lower write ampli-
fication compared to the other state-of-the-art and the consistency of Speed-Dedup
across varying deduplication ratios suggests that it scales better with larger datasets.
As deduplication ratios increase, it consistently maintains lower storage requirements,
making it advantageous for environments with rapidly growing data.
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4.4. Fault Tolerance and Failure Recovery

In Ceph, the storage location for data is at the level of the Object Storage Device
(OSD). To evaluate recovery performance, we measured the time required to recover all
data objects after varying the number of OSD failures. The recovery time was measured
from the moment an OSD failed to the point when the system’s health status returned to
“OK”. The results of this experiment are shown in Table 3.

Table 3. Recovery time of failed data storage locations (OSDs) in the cluster. Green means optimal
values and red means non-optimal values.

Recovery Time (s)
1 Failed OSD

Recovery Time (s)
2 Failed OSDs

Recovery Time (s)
3 Failed OSDs

Recovery Time (s)
4 Failed OSDs

Speed-Dedup 48.23 49.56 51.34 54.35
GRATE 53.21 56.23 59.74 62.13

CAO 53.29 56.28 60.02 62.13

The analysis of Table 3, which presents the recovery times for failed OSDs within the
storage cluster, reveals several key insights:

¶ Speed-Dedup’s consistent superiority: Speed-Dedup consistently demonstrates faster
recovery times compared to both GRATE and CAO across all test cases. For instance,
with a single OSD failure, Speed-Dedup completes recovery in 48.23 s, while GRATE
and CAO take 53.21 s and 53.29 s, respectively. This shows that Speed-Dedup has an
advantage in recovering from OSD failures.

· Incremental Increase in Recovery Times: As the number of failed OSDs increases,
recovery times increase for all approaches. However, Speed-Dedup consistently
outperforms GRATE and CAO, maintaining shorter recovery durations even as the
scale of failures grows. This trend underscores the superior efficiency of Speed-Dedup
in recovery scenarios.

¸ Efficiency in Handling Multiple Failures: The results suggest that Speed-Dedup
not only recovers more quickly but also exhibits a smaller incremental increase in
recovery times as the number of OSD failures increases. This suggests that Speed-
Dedup is more effective at managing multiple OSD failures compared to GRATE and
CAO which show a larger increase in recovery time as failures scale up.

Overall, these trends highlight the effectiveness of the ORC and CAC fault tolerance
and recovery mechanisms in Speed-Dedup, which contribute to its faster recovery times
and superior scalability in handling multiple OSD failures.

4.5. Analysis of Interference During Data Recovery

To further analyze the impact of recovery time during the data recovery process, we
traced the interference on foreground I/O operations (IOPS) and the duration of data
recovery during OSD failure events. For this evaluation, we set the periodic invocation
time for the ORC and CAC threads to 200 s. To simulate OSD failures, we ran a script
that deactivates one OSD from three selected storage servers out of the eight servers in
our configured cluster every 150 s. The trace was conducted over a total period of 700 s.
The results of this experiment are shown in Figure 8. The results indicate that whenever data
recovery threads are initiated, foreground I/O operations are temporarily suspended. This
period of data recovery represents the time during which the storage cluster redistributes
data objects and chunks to new storage locations. During this data migration process,
foreground I/Os cannot be served due to interference from the data migration. In Figure 8,
we observe that our proposed Speed-Dedup approach demonstrates low interference time,
along with superior IOPS performance, compared to the GRATE and CAO methods. This
result further demonstrates Speed-Dedup effectiveness in achieving high-performance
fault tolerance and data recovery efficiency.
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Figure 8. Interference analysis during data recovery.

5. Conclusions

This paper proposes Speed-Dedup, a high-performance deduplication framework
aimed at overcoming the inefficiencies of traditional deduplication systems in large-scale
storage environments. By introducing a novel approach that maintains a deduplicated
primary object alongside a semi-deduplicated replica, Speed-Dedup significantly reduces
write amplification, thereby minimizing the overall data written to storage. Unlike conven-
tional systems that fully deduplicate all replicated data, Speed-Dedup optimizes storage
space efficiency by only deduplicating the primary object. This strategy not only en-
hances storage utilization but also mitigates the performance penalties associated with
traditional replication methods. Furthermore, Speed-Dedup maintains the critical fault
tolerance and self-healing features of traditional systems through mechanisms like ORC
and CAC, ensuring reliable data availability and fast recovery without compromising
performance. Supported by extensive experimental results, Speed-Dedup demonstrates
significant improvements in both write I/O performance and space efficiency when com-
pared to conventional approaches. This makes Speed-Dedup a more efficient and scalable
deduplication solution for modern, scale-out storage infrastructures.

Potential future applications for Speed-Dedup could include enhanced cloud storage
solutions, where its ability to significantly reduce write amplification and improve I/O
performance can be leveraged to optimize storage costs and efficiency in large-scale out-
storage environments. Additionally, the framework’s fault tolerance mechanisms, such
as Object Replica Check (ORC) and Chunk Availability Check (CAC), could be applied
in disaster recovery scenarios, ensuring high data availability and faster recovery times
during system failures. Also, Speed-Dedup’s capability to decouple read and write oper-
ations allows for non-blocking reads, which could be particularly beneficial in real-time
data processing applications where low latency is critical. This feature could enhance
performance in various sectors, including finance, healthcare, and online services, where
rapid data access is essential.

6. Future Work

In this study, we implemented our solution using physical disks as object storage
daemons (OSDs) to evaluate the effectiveness of the proposed recovery mechanisms. These
mechanisms were designed and thoroughly analyzed, with a focus on addressing failures
at the level of physical disk locations. Our future work will aim to broaden the scope of
Speed-Dedup by incorporating Virtual Machines and the utilizing of snapshots for data
storage and recovery. Snapshots are expected to significantly improve recovery times due
to their ability to capture the system state more efficiently, reducing the time required to
restore data after a failure [40].
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