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ABSTRACT: Exploiting the multistate characteristic, we have engineered a single
memristor based on amorphous boron nitride (a-BN) capable of rivaling the logic
capacity of multiple field-effect transistors (FETs). The quintessence of our work is
the realization of quinary resistive switching with five distinct resistive states enabled
by a wafer-scale, chemical vapor deposition (CVD) grown a-BN thin film. This feat is
achieved directly on the substrate, eschewing the need for transfer processes and
leveraging low-temperature synthesis. The device exhibits an exceptional On/Off
ratio of ∼108, sustained over a significant cycling lifespan. We uncover the intricate
interplay between the a-BN channel thickness and the quantized resistive states,
revealing a precision-controlled resistive landscape. This capability addresses the
production and transfer bottlenecks associated with two-dimensional materials,
setting the stage for our a-BN-based memory device to advance the frontiers of
ultrahigh-density data storage and computing systems.
KEYWORDS: amorphous boron nitride, resistive switching memory, multilevel memory, CMOS-compatible, chemical vapor deposition,
intermediate resistive switching states

1. INTRODUCTION
Resistive switching memories (RSMs) have emerged as a
superior alternative to traditional flash memories and random-
access memories due to their high operating speed, enhanced
device density, reduced cost, and significant nonvolatility.1−5

The challenge, however, lies in transcending inherent limitations
and physical constraints to realize ultrahigh data storage
capacities without compromising integration density.1,2 Ad-
dressing this, two strategies surface: reducing memory cell size
and increasing the number of states per cell through multistate
integration. While the former is laden with challenges including
data processing issues,3 charge leakage,4 and fabrication
complexities,5 the latter appears more viable by augmenting
the levels between the “On” and “Off” states within each cell.
Sustainable and reproducible intermediate states have been

achieved, capable of enduring numerous read-write cycles.
These states can be reconfigured using structural and scale
engineering techniques,5,6 significantly enhancing data storage
capacity by transitioning from binary to multilevel memory
states.1,7,8 Multilevel memories (MLMs) are poised to store
multibit information per unit cell, thereby boosting storage
capacity and reducing power consumption without aggressive
downscaling.9 Beyond materials and fabrication, multiple
conductance states are pivotal for improving computational
precision in artificial neural networks (ANNs).10 For instance, a
great deal of attention is paid to multiplication-addition
accelerator and multilevel computing of RSMs specifically in
reservoir computing (RC) as an important family of models in

neuromorphic systems.11 Utilization of RSM characteristics
memristors in the reservoir layer can enhance the efficiency of
the computing system12 Typically, resistive switching in shared
memories yields two outputs, “On” and “Off”, corresponding to
binary states “1” and “0”. With n states, the data storage potential
is log2(n) bits. For example, a single cell with 32 distinct levels
can store 5 bits, surpassing binary capacities. The future of
ultrathin electronics and neuromorphic applications hinges on
the compatibility of new materials with the demands for higher
storage densities, continued miniaturization, and simplified
device configurations. A high resistance On/Off ratio is crucial
for stable multilevel resistive switching performance. For RSM-
based artificial synaptic devices, it is essential to manage resistive
switching through these intermediate states.13 Despite efforts to
establishMLMs, the search for effective devices is hampered by a
lack of suitable materials, apt device configurations, and
switching principles. While various organic materials have
been explored,14−18 achieving multistate reliability with
inorganic memory channels remains challenging, with organic
RSMs facing issues of low-density storage capacity,19 slow
switching speeds, and long-term material instability.20 Layered
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materials with mono to few-layer structures have shown promise
for ultrathin logic and memory devices, thanks to their atomic
thinness,21−25 mechanical flexibility, low operating voltage, ease
of surface engineering, and nonvolatile switching properties.26,27

Multilevel resistive switching memory (MLRSM) devices
have been fabricated with various two-dimensional (2D)
materials.2,21,22,28,29 However, these often suffer from high

leakage currents30 and poor environmental stability.31 Boron
nitride, in contrast, exhibits exceptional physical properties, such
as high mechanical strength and chemical stability, making it
suitable for robust electronic32−36 and photonic devices.32,37,38

Metal/a-BN/metal devices, in particular, have shown significant
binary RS performance, including high retention time,39

excellent On/Off ratios,40 and high write/erase cycling,41,42

Figure 1. (a) Schematic illustration of double-zone low-pressure chemical vapor deposition system and growth mechanism of the a-BN film and (b)
photo and optical microscope image of large-scale grown a-BN thin film on SiO2 (inset), and (c) AFM image of surface morphology of a-BN thin film
with 30 nm thickness, (d) XPS profiles for B1s and N1s peaks, and (e) electron energy loss spectroscopy (EELS) of the a-BN thin film.
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along with superior bending endurance.40 Nevertheless, the
challenge of high-temperature wafer-scale growth of h-BN43

remains, especially considering the temperature sensitivity of
CMOS circuits.44 Additionally, most materials used in MLMs
are not compatible with existing Si-based CMOS technologies,
which is a barrier to the mass production of reliable devices.
Therefore, 2D-material-based MLMs necessitate the develop-
ment of transfer-free techniques and low-temperature growth
conditions that are compatible with CMOS integration
technology.
In this study, we propose a high-performance multilevel

memory device based on wafer-scale and low-temperature

grown a-BN. Our device leverages a transfer-free growth

approach, enabling direct integration of BN memory onto a

substrate, circumventing common transfer challenges. We

investigate the resistive switching mechanism, which is

attributable to two primary factors: injected Ag ions and

variations in metallic filament size and number. To our

knowledge, this is the first report of a multilevel memory device

implemented reliably in a 2-dimensional structure utilizing

boron nitride materials.

Figure 2. (a) Schematic illustration of a-BNMLM device, (b) HR-TEM image of the device, (c) high-resolution TEM image of a channel where inset
shows diffraction pattern shows the amorphous structure of boron nitride.

Figure 3. (a) I−V characteristic, (b) zoomed I−V characteristics with intermediates level states, (c) resistance (top) and current (bottom) switching
over time among five states, and related transition frequency.
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2. RESULT AND DISCUSSION
2.1. Low-Temperature Growth of a-BN. The a-BN was

synthesized using a two-zone low-pressure chemical vapor
deposition (LPCVD), depicted in Figure 1a. The a-BN films
were synthesized by the LPCVDmethod. A SiO2/Si was used as
a substrate following ultrasonic cleaning and O2 plasma
treatment. A borane−ammonia complex was the precursor
used for a-BN deposition. The substrate and precursor
temperatures during growth were 250 and 100 °C, respectively.
Finally, transparent and centimeter-scale a-BN film is uniformly
coated on the 300 nm SiO2/Si substrate (see the Experimental
Section).
Surface morphology and thickness of the grown a-BN thin

film were determined using atomic force microscopy (AFM), as
shown in Figure 1c. The height differential between the
substrate and the a-BN film indicates a thickness of
approximately 30 nm. We produced several a-BN thin films
with thicknesses ranging from 3 to 30 nm, demonstrating
uniformity across areas as large as several centimeters squared.
This large-scale, direct CVD growth of a-BN thin films presents a
promising route to circumvent the limitations associated with
the high-temperature annealing required for atomic layer
deposition (ALD) and CVD growth of hexagonal boron nitride
(h-BN) at temperatures exceeding 400 °C.35,36 High-resolution
X-ray photoelectron spectroscopy (XPS) scans of B1s and N1s
peaks, displayed in Figure 1d, correspond to the individual

boron and nitrogen atoms, situated at binding energies of 398.3
and 190.6 eV, respectively. This confirms that the a-BN
comprises sp2-bonded B and N atoms.45 The peak shapes and
positions suggest minimal contamination, while the absence of
an oxidation peak typically found around 192.1 eV46 signifies
that the a-BN surface did not undergo oxidation. Electron
energy loss spectroscopy (EELS) was utilized to map the
distribution of B and N atoms in pristine a-BN, as demonstrated
in Figure 1e. The identified around 200 and 411 loss peaks
correspond to B and N, corroborating the formation of the BN
film.
2.2. Memory Performance. The schematic of our

fabricated Ag/a-BN/Au MLM device on the SiO2 substrate is
depicted in Figure 2a. A cross-sectional TEM image in Figure 2b
confirms the a-BN layer’s thickness at approximately 30 nm,
sandwiched between the SiO2 substrate and the Ag electrode,
without discernible atomic ordering. Enlarged TEM images and
the corresponding diffraction patterns (inset of Figure 2c) assess
the atomic structure of the memory channel, corroborating the
amorphous nature of the boron nitride thin film. This assertion
is further supported by the intensity profile analysis of the back-
folded edge, which indicates an average lattice spacing of 0.48
nm derived from electron diffraction data, characteristic of an
amorphous structure (Figure S1, Supporting Information).
Differing thicknesses of a-BN thin films were deposited on

SiO2 substrates via LPCVD, upon which patterned drain and

Figure 4. (a) The variations in VSET1, VSET2, VSET3, and VRESET, (b) retention performance with five resistance states (HRS, IRS1, IRS2, IR3, and LRS),
(c) endurance performance with five different resistance levels, and (d) device-to-device uniformity of the resistance at LRS and HRS are collected
from 20 a-BN memory devices.
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source electrodes were established. The Ag and Au electrodes
are 50 nm thick and deposited by thermal evaporation
equipment. Our lateral a-BN MLM device, in contrast to
vertically configured RS devices, can be modulated via multiple
terminals. This lateral design facilitates versatile multiterminal
signal input, enabling the emulation of neural functions for
synaptic devices47,48 and applications in in-memory comput-
ing.49 The electrical properties of the a-BN memory were
appraised, with Figure 3a presenting the I−V characteristics for
an RSM with a 30 nm channel. We want to note that our device
has a dimension of 2.5 × 4 μm (length × width). Exhibiting
stable bipolar resistive switching behavior, the device offers
advantages for high-performance applications, particularly when
leakage current is mitigated. During electroforming, the channel
exhibits high resistance status (HRS), with bias voltage sweep
starting at zero and extending to approximately 2.3 V, at which
point a noticeable surge in current indicates a shift to the first
intermediate resistive state (IRS1), coinciding with a significant
reduction in resistance. Continued bias enhancement precip-
itates a second abrupt increase at a VSET of 3 V, transitioning the
memory to IRS2. Progressing to a VSET of 3.6 V, the device
attains a third intermediate state, IRS3, before settling into a low
resistive state (LRS). This quintenary RS behavior encompass-
ing HRS, IRS1, IRS2, IRS3, and LRS demonstrates the
multilevel switching capability inherent to our a-BN RSM
(Figure 3b). We denote the onset voltage transitioning from
HRS to IRS1 as VSET1. Also, we observed, the transition time
from HRS to each of the intermediate states and LRS, as shown
in Figure 3c. Transition starts with sudden resistance/current
increase until a critical voltage reaches any of the threshold

voltages (e.g., VTIRS1, VTIRS2, VTIRS3, VTLRS) which is similar to
the behavior raised by the conductive path rupture. The
corresponding transition frequencies for each of the resistive
states are stages 3.4, 2.9, 3.3, 3.5 MHz.
Figure 4a charts the consistency in peak VSET1, VSET2, VSET3,

and VRESET values across multilevel SET and RESET cycles,
illustrating precise control over HRS and LRS at corresponding
SET and RESET voltages. The consistency of VSET1,2,3 has been
established, ensuring reliable RS behavior with uniformity in all
SET and RESET voltages that surpasses that of high dielectric
BN RSMs50,51 and organic RSM counterparts.52,53 An effective
write/erase operation, considerable endurance, and a multilevel
storage capacity are imperative for an optimal data storage
system.54 Figure 4b highlights the retention capabilities of our a-
BN MLM, maintaining five discrete resistive levels across a
duration of over 103 seconds. Resistance readings taken at 0.6 V
demonstrate this noteworthy switching ratio, effectively
countering the common issue of leakage current in typical 2D
switching channels. Memory endurance over 500 cycles is
exhibited in Figure 4c, identifying five discrete resistive levels
with resistances spanning 103 to 1011. These findings suggest
that conducting filaments (CFs) are initially narrow, expanding
progressively with incremental bias voltage, leading to
intermediate expansion states and ultimately, a comprehensive
CF facilitating a lower resistance path at LRS. The discernible
resistance gaps between the states ensure minimal error
potential during standard read/write operations, suggesting
these five distinct states as a foundation for BN-based ultrahigh-
density data storage.

Figure 5. (a) Thickness-dependent I−Vmeasurement, (b) On/Off current ratio and threshold voltage versus a-BN channel thickness of memory cell.
(c) Variation and (d) number of intermediate states to the a-BN film thickness of (i) 3, (ii) 8, (iii) 20, and (iv) 30 nm.

ACS Applied Electronic Materials pubs.acs.org/acsaelm Article

https://doi.org/10.1021/acsaelm.4c01042
ACS Appl. Electron. Mater. 2024, 6, 7781−7790

7785

https://pubs.acs.org/doi/10.1021/acsaelm.4c01042?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaelm.4c01042?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaelm.4c01042?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaelm.4c01042?fig=fig5&ref=pdf
pubs.acs.org/acsaelm?ref=pdf
https://doi.org/10.1021/acsaelm.4c01042?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Uniformity across devices is paramount for the reliability of
memory systems. We evaluated this by analyzing the switching
performance across several devices and observed a narrow LRS

and HRS resistance distribution spanning over 8 orders of
magnitude, as detailed in Figure 4d. The cumulative probability
data for each resistance state of a set of 20 cells were performed.

Figure 6. Schematic illustration of the contribution of metal ions and vacancies generation and growth of conducting filaments which results in RS,
energy band diagram, and corresponding I−V characteristics for (a) pristine, (b) HRS, (c) IRS1, (d) IRS2, (e) IRS3, and (f) LRS.
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Additionally, we investigated the influence of a-BN film
thickness on resistive switching (RS) behavior, with results
indicating a substantial impact, shown in Figure 5a. The On/Off
ratio improves significantly as the channel thickness increases,
illustrated in Figure 5b,c, due primarily to a decrease in HRS for
thicker a-BN films. A thinner a-BN layer, containing a greater
amount of diffused Ag, shows a decreased On/Off ratio in
contrast to thicker layers, where Ag diffusion is less prominent.55

The dependency of multilevel RS on thickness is demonstrated
in Figure 5d. As the a-BN layer thickness increases, intermediate
states surface between HRS and LRS, and their number rises
with increased thickness, likely due to the necessity for higher
biases to accumulate Ag ions and establish conductive pathways
to the electrode. On the other hand, no intermediate state was
observed for t = 3 nm where the memory device directly
switched from HRS to LRS. However, for t = 8, 20, and 30 nm,
one, two, and three intermediate states emerged, respectively
and the voltage positions of state one and state two shifted to
higher voltages. Furthermore, for t = 20 and 30 nm, the third
intermediate state (state 3) has formed, where this peak has also
shifted to upper voltages with increasing channel thickness. This
shift is because the diffusion barrier cannot completely break
through the thicker channel to form a connection pass between
two electrodes leading to higher local VSET and a new
intermediate level (state 3). Also, we compared our device
performance with the state of the art in Table S1. Compared
w i t h s t a t e - o f - t h e - a r t B N - b a s e d m e m o -
ries,37,39−41,50,51,56−59,65−68 our fabrication process holds
significant advantages in terms of growth temperature,
applicability to CMOS integration, and device perform-
ance.60−62,64

2.3. Mechanism of Resistive Switching. Our inves-
tigations into the a-BN-based RSM have identified four principal
conduction mechanisms and energy band diagrams within a 30
nm thick a-BN device, as illustrated in Figure 6. At relatively low
bias voltages, Ag ions migrate toward the electrode by creating
boron vacancies within the a-BN channel. These vacancies, with
lower formation energy than nitrogen vacancies, serve as traps
for Ag ions, facilitating the formation of conductive paths. At the
same time, the current remains subdued, adhering to the Ohmic
conduction regime (segment 1).63 Also, the energy band
diagram shown in the middle column shows the initial state, a
barrier layer formed by a-BN has a blocking effect on the
electron transport, and the memory device is at HRS. As the
forward bias increases the band alignment at the interfaces tilts
the energy band of a-BN, consequently modulating the energy
barrier [697].Where B ions start tomigrate and related doping is
generated. Upon increasing the bias voltage beyond 2.3 V, the
HRS transitions to an intermediate resistive state (IRS),
characterized by additional ion trapping and conductive
pathway formation. The enhanced doping generated by trapped
ions, further electrons in the conduction band of a-BN shown in
the band diagram (see Figure 6c). This low voltage does not
suffice for ions to diffuse through the channel fully where the
negative ions are further created through the a-BN channel
(Figure 6d). This leads to the manifestation of IRS, governed by
trap-controlled space charge limited conduction (SCLC),
evident as a sharp rise in current (segment 2). As the bias
crosses 3 V, the trapping of Ag ions escalates, achieving a state of
trapped charge-limited current (TCLC) conduction around a
VSET of 3.4 V. This progression culminates in the switch to the
LRS. Reversing the bias from +3.5 V back to 0 V prompts boron
ions to return to their vacancies, reverting the channel to HRS

through Ohmic-like conduction (segment 4). The memory’s
endurance, demonstrated at a read voltage of 0.6 V in Figure 4c,
showcases stable HRS and LRS for numerous cycles, with an
On/Off resistance ratio of approximately 108 and durable
endurance beyond 500 cycles. The resistance retention over
time, measured at 0.6 V for both HRS and LRS, confirms the
longevity of the states (Figure 4c). The emergence of each
intermediate state at distinct voltages results from the inception
or alteration of filament size, altering channel resistance. Distinct
fromHRS, the LRS exhibits less dependency on the channel area
due to the filamentary nature of conduction when the memory is
active (Figure 3a). Interface-type conduction, known for its size-
dependent behavior,69 may not significantly influence our
memory device’s operation. The presence of water molecules
trapped at the interface between a-BN and the SiO2 substrate
could potentially introduce trap sites, contributing to the
multilevel switching observed.

3. CONCLUSION
In summary, our work presents a multilevel resistive switching
device based on a-BN, showcasing intermediate states and
delineating the operational mechanisms and characteristics. The
multibit memory performance is marked by high endurance, an
extensive On/Off ratio, and stable retention throughout the
forming period. The device stably maintained all five resistive
states for at least 500 cycles, with exceptional uniformity
observed across multiple devices. The number of intermediate
states notably depends on the a-BN film’s thickness, which
underpins themultistate switching behavior due to the evolution
of filament dimensions within the channel. Our implementation
of low-temperature, direct growth of a-BN-transfer-free on a
substrate is a pivotal step toward addressing temperature
incompatibility and transfer challenges, advancing wafer-scale
integration of 2D materials with CMOS technology.

4. EXPERIMENTAL SECTION
4.1. Material Growth. A 300 nm SiO2/Si substrate was positioned

in the growth zone (furnace II) following ultrasonic cleaning and O2
plasma treatment. Subsequently, a borane−ammonia complex (NH3−
BH3, 97% purity, 10 mg, Sigma-Aldrich) was introduced into the
precursor zone (furnace I) for a-BN deposition. The substrate and
precursor were heated to 250 and 100 °C, respectively, under a pressure
of approximately 110 Torr, with a hydrogen (H2, 99.999%) flow of 22
sccm. After reaching the target a-BN film thickness, the furnaces were
cooled to room temperature to halt the growth, and the samples were
extracted. Figure 1b displays a centimeter-scale a-BN film uniformly
coated on the 300 nm SiO2/Si substrate. A corresponding inset
showcases the transparent a-BN film coverage.
4.2. Material Characterizations. HR-TEM analyses were taken

using Seron AIF 2100 and Philips CM30. The surface morphology of
the analyses was characterized by optical microscopy and Park NX10
AFM (Park System). The Raman spectroscopy (Alpha300 M+, WITec
GmbH) with an excitation wavelength of 532 nm and laser power of 5
mW is used to investigate crystal properties of a-BN samples. The
elemental composition of films was investigated by X-ray photoelectron
spectroscopy (XPS) analysis (ESCA2000 spectrometry).
4.3. Device Fabrication. RSM devices with the structure of Ag/a-

BN/Au on SiO2 were fabricated with different a-BN channel
thicknesses. The electrode configuration was determined by a shadow
mask with an electrode area of 30 × 30 μm. The metal deposition
process was performed to fabricate Ag and Au electrodes on top of the
a-BN thin film using the thermal evaporator facility.
4.4. Device Characterization. A 4-probe setup conected to

Keithley 2400 was used to determine the electrical characteristics of
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Ag/a-BN/Au memory devices at room temperature under ambient
conditions.
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