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Abstract
Two-dimensional transition metal dichalcogenides (TMDs) have received more interest for their
potential role in future electronic and optoelectronic applications. Unlike other TMDs, Rhenium
diselenide (ReSe2) stands out for its distinctive anisotropic growth characteristics. These unique
features arise from its low lattice symmetry and interlayer decoupling, this has sparked significant
interest among researchers. Previous research has indicated the presence of various growth
patterns, including dendritic formations and structures resembling flowers. In this study, we
effectively produced ReSe2 using the ‘Tilting Boat’ method to achieve growth on a 21 µm scale.
Through precise manipulation of the growth conditions, we successfully attained flakes of 21 µm
scale in comparison to prior findings. Moreover, we successfully produced a variety of shapes,
including triangles, diamonds, and hexagons, on 1× 1 cm2 Si/SiO2 substrates. Furthermore, we
achieved the successful production of a continuous ReSe2 film on a 1× 3 cm2 Al2O3 substrate. We
verified the distinct anisotropic properties of ReSe2 via Raman Spectroscopy. Furthermore, we
acquired three-dimensional visual representations of ReSe2 flakes and continuous films via SEM
measurements. By employing EDS data and analysing x-ray photoelectron spectroscopy spectra,
we have established a compositional ratio of 1:2 for Re and Se, which aligns with the MX2

structure. This confirmation indicates the successful synthesis of high-quality ReSe2 flakes.

1. Introduction

Two-dimensional (2D) transition metal dichalcogenides (TMDs) materials exhibit an MX2 structure,
characterized by one transition metal atom sandwiched between two chalcogen atoms in a layered
arrangement, held together by relatively weak van der Waals forces [1, 2]. Generally, 2D nanosheets exhibit
distinct physical properties compared to its bulk counterparts. Indeed, materials like MoS2, WS2, and WSe2
are well-known 2D materials that have gained significant attention in the scientific and engineering
communities for their unique properties and versatility in various device applications [3–9]. Nevertheless,
rhenium diselenide (ReSe2) stands out from other TMDs thanks to its optical characteristics and anisotropy,
making it more attractive [10–13]. The bandgap of monolayers ReSe2 is 1.1 eV, while for multilayers is 1.3 eV
[14, 15]. Typically, ReSe2 exhibits a triclinic atomic structure with a lattice constant of a= 3.32 Å [16]. One
intriguing aspect of ReSe2 is its ability to maintain consistent bandgap properties regardless of variations in
thickness. Even in the face of challenges associated with achieving precise thickness control, ReSe2 exhibits
similar performance, making it a promising candidate for applications in photodetectors and
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next-generation devices [2, 17–20]. In specific, the element Re exhibits anisotropic properties due to its
diamond chain-like structure, leading to the splitting of energy levels when exposed to linearly polarized
light. This attribute finds practical application in image sensors since its behavior changes based on the
direction of incident light polarization [3–9]. The significant expansion of TMDmaterial research has been
driven by the miniaturization of devices, particularly focusing on group VI TMDs like MoS2 and MoSe2
[21–25]. Nevertheless, further investigation is required to address the synthesis of group VII transition
metals such as Re, with existing methods for ReSe2 synthesis proving to be challenging at a larger scale.
Consequently, current research predominantly relies on mechanical exfoliation methods, and there is limited
prior exploration of alternative synthesis techniques. Despite ReSe2 demonstrating relatively stable bandgap
characteristics across different layer numbers, the attainment of superior electrical properties necessitates the
synthesis of ReSe2 with fewer layers and larger surface areas. There are various methods for synthesizing
ReSe2, including the chemical vapor transport Reactions method [18, 26], where solid-state precursors
transport elements or compounds to synthesize, and the Bridgman method [14], which crystallizes
liquid-state precursors at high temperatures to form single crystals. It is important to note that these
methods result in doped materials that are transport agent dependent [14]. Furthermore, they are
synthesised as 3D bulk crystals [14, 26], which requires a mechanical exfoliation process. Unlike other 2D
materials, anisotropic 2D materials such as ReSe2 have the disadvantage that they are easily broken during
the exfoliation process due to their orientation-dependent mechanical properties [27, 28]. In this study, we
employed the chemical vapor reaction method, which is a bottom–up approach suitable for large-area
synthesis of 2D materials. chemical vapor deposition (CVD) process is a technical method where gaseous
chemical precursors undergo chemical reactions on a solid surface to form thin films. In this process, the
gaseous precursors participate in reactions and deposit as solids. Typically, the CVD process involves several
steps: precursor supply, surface adsorption, chemical reaction, deposition and growth, and finishing. The
precursors are supplied into the system and exist in the gas phase, then they adsorb onto the solid surface.
There, chemical reactions take place, and the resulting material is deposited on the surface to form a thin
film. The formed thin film undergoes appropriate post-treatment processes for finishing. Therefore, faster
synthesis over a larger area was achieved compared to conventional methods.

The aim of this study is to make a meaningful contribution to the large-scale synthesis of ReSe2 for
potential applications in next-generation devices. To achieve this, we performed processes utilizing
atmospheric pressure CVD (APCVD) and low pressure CVD (LPCVD) within a quartz tube with diameter
of 3 cm and a length of 225 cm. We confirmed the formation of ReSe2 flakes and successful synthesis of ReSe2
films using the tilted substrate. We believe that our research has established a significant groundwork for the
investigation of group VII TMDs by acquiring essential data regarding the synthesis of ReSe2. We anticipate
that these advancements will lead to superior optical properties and electrical characteristics, thereby
significantly enhancing the performance of next-generation devices.

2. Methods

2.1. Preparation
We synthesized two types of ReSe2 using AP/LPCVD with a graphite boat. The growth was performed in a
quartz tube with a diameter of 3 cm and a length of 225 cm, which was cleaned with flushing H2 for 10 min.
Additionally, prior to the growth process, the boat was thoroughly rinsed with isopropyl alcohol.

2.2. ReSe2 flake growth on SiO2 substrate
Firstly, for ReSe2 flake formation, we employed a 1× 1 cm2 Si/SiO2 substrate. The recipe involved using
ReO3 30 mg (Alfa Aesar, purity 99.9%) and Se 60 mg (Alfa Aesar, purity 99.9%) as precursors, with Ar
(75 sccm) serving as carrier gas. In figure 1 CVD schematic, the zone 1 from the left, measured from the
heating zone, was set to 760 ◦C without any material placed. ReO3 was positioned in the zone 2, with a
process temperature of 560 ◦C, and the zone 3 was set to 320 ◦C, with the temperature ramping up over
5 min. The process was carried out at atmospheric pressure, 760 Torr, and lasted for 20 min. For film ReSe2
synthesis, we used a ReO3 7 mg (Alfa Aesar, purity 99.9%) and Se 100 mg (Alfa Aesar, purity 99.9%) recipe
with Ar (60 sccm) and H2 (10 sccm) as precursors and carrier gases. In figure 1 CVD schematic, the third
zone from the left was set to 760 ◦C without any material placed, ReO3 was placed in the second zone, with a
process temperature of 750 ◦C, and the third zone was set to 250 ◦C, with the temperature ramping up over
15 min. The process was conducted at 1 Torr of pressure and lasted for 30 min.

2.3. ReSe2 film growth on Al2O3 substrate
We used a 1× 2 cm2 Al2O3 substrate. After completing the two mentioned processes, we allowed natural
cooling for 1 h. In figure 1, which represents the CVD schematic, you can observe various synthesized shapes
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Figure 1. Schematic of the CVD growth of ReSe2 in the confined reaction space and the surface reaction on Si/SiO2.

such as triangles, diamonds, trapezoids, etc, with sizes around 21 µm. By using a tilted substrate, we reduced
the boundary layer and confirmed successful synthesis. Boundary layer represents the boundary between the
deposited material and the surface where the reaction occurs, occurring as the reactants move towards the
surface and deposit during the process. Reducing the thickness of the boundary layer can increase the
efficient transfer of reactants and the rate of deposition. The tilted substrate is placed on a boat with a length
of 5 cm, with a 20-degree tilt. The distance between the tilted substrate and ReO3 is 6 cm, while the distance
between ReO3 and Se is 9 cm. Consequently, we propose tilting as one of the methods for CVD synthesis.

2.4. Characterization
The Raman equipment used was the Raman Touch from NANO PHOTON, employing a green 532 nm laser
for excitation. For FE-SEM imaging, the Carl Zeiss Gemini 500 system was utilized, along with an EsB
detector, and EDS data were obtained using the EDS detector integrated into the FE-SEM. The AFM
equipment used was the Multimode-8 from BRUKER. x-ray photoelectron spectroscopy (XPS)
measurements were carried out using the Axis Supra+ from Kratos Analytical Ltd, with a 20 s etching
applied during XPS measurements. The transmission electron microscopy (TEM) equipment used was the
JEM-ARM200F with a spherical aberration corrector (Cs corrector), and TEM samples were prepared on
grid using focused-ion beam techniques.

3. Result and discussion

The optical configuration for chiral Raman scattering measurements is illustrated in figure 2. A quarter-wave
plate (θ/2) is employed to generate either right-handed (RCP) or left-handed (LCP) circular polarization
during excitation. The scattered light then traverses the same θ/2 and is subsequently collected without the
use of analyser.

We conducted the ReSe2 film synthesis process following the recipe mentioned in the experimental
details. Figure 3(a) clearly shows well-defined peaks around 125 cm−1, 169 cm−1, and 174 cm−1, which are
characteristic Raman peaks of ReSe2 [10, 29, 30]. In previous processes without tilting, Raman spectra did
not yield satisfactory results, lacking the detection of relatively low-intensity peaks. The boundary layer refers
to the layer in which the flow of fluid near the surface of an object converges to a speed of zero as it
approaches the substrate surface. This layer affects the fluid’s velocity. In the absence of tilting, the flow near
the object’s substrate surface can be uneven due to the gas diffusion to the edge of the substrate affected by
the boundary layer. This can result in non-uniform deposition or lack of deposition. Therefore, by tilting, we
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Figure 2. Optical setup of the chiral Raman scattering measurements.

Figure 3. (a) Raman Spectra of as-grown ReSe2 (b) To investigate the Raman spectra variations with incident light polarization,
Raman intensity was examined at each angle from 0◦ to 180◦.

ensure that the flow can reach the entire front surface of the substrate regardless of the boundary layer’s
location [31, 32]. Before confirming the anisotropic properties of ReSe2 in figure 3(b), we explored changes
int the Raman spectra by varying the incident light polarization angle from 0◦ to 180◦. Raman intensity was
observed at 125 cm−1, 159 cm−1, and 171 cm−1 at all angles, revealing variations in intensity with respect to
the angle. To delve into these differences in detail, polarization mapping was conducted. The deposition of
ReSe2 was also confirmed by the color change on the surfaces of Si/SiO2 and sapphire substrates, as shown in
Figures S1 (a) and (b). Not only the continuous film, but also hexagonal and sunflower shapes could be
synthesized by adjusting the recipe. The Raman peaks and intensities for each shape can be found in Figure
S2. Furthermore, Figure S2 presents Raman spectra for hexagonal and sunflower-shaped ReSe2 flakes. It
confirms the presence of ReSe2 Raman peaks with peaks near 125 cm−1, 169 cm−1, and 174 cm−1 [1]. The
differences in peak intensities depending on the shape are also noticeable.

In figure 4(a), we validated the anisotropic characteristics by observing the ideal Raman spectra peak
through Raman spectroscopy. These anisotropic features on a 2D plane result in energy level splitting for
linearly polarized light, and the characteristics vary with the direction of the incident light, making it suitable
for image sensors and optoelectronic devices [3–9]. Furthermore, in figure 4(b) θLVR fitting through ARPRS
was employed to provide a more intuitive representation of the anisotropic properties of ReSe2 flakes. Color
plots were generated to illustrate the changes in intensity with respect to angles. It was observed that the
intensity is high around Raman shifts of approximately 125 cm−1 and 169 cm−1.

Additionally, to confirm the thickness of the ReSe2 growth, we conducted AFMmeasurements, as
depicted in figure 5(a), revealing a film thickness of approximately 4 nm. Since a monolayer of ReSe2 is
∼0.7 nm, we can confirm that our film consists of 5–6 layers [1, 17]. Furthermore, it is apparent that the
right section of the image displays uniform deposition, providing confirmation of the existence of a
continuous layer. In the initial experiments, when 100 mg of Se was used, the thickness was formed to be
approximately 20–30 nm. In order to produce ReSe2 films with reduced thickness, the Se qu antity was
systematically decreased from 100 mg to 60 mg. This reduction was necessary because Se possesses low
chemical reactivity, and precise control over both the amount of Se and the temperature is vital during the
synthesis of Se-based TMDs (Se-TMDs) [33]. Typically, a larger amount of Se results in the deposition of
thicker films. Since the previous ReSe2 film was notably thick, we aimed to deposit as few layers as possible by
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Figure 4. (a) This is a Raman intensity mapping image as a function of angle in-plane (b) color plots of angle-resolved polarized
Raman spectroscopy (ARPRS) of ReSe2 flakes under the θLVR configuration.

Figure 5. (a) AFM full image of film type ReSe2 (b) AFM-based thickness measurement data for Film-Type ReSe2.

reducing the amount of Se gradually to 60 mg. And, by using 75 sccm of Ar gas without using hydrogen, it
was possible to synthesize a thinner ReSe2 in flake form. The processing time was adjusted progressively from
5 min to 30 min. When processed for 5 min, the Se sample did not completely melt, and the ReO3 sample did
not undergo reduction. At temperatures exceeding 400 ◦C, ReO3 initiates decomposition into Re2O7

(volatile) and ReO2 (less volatile), as indicated by the following reaction, as reported in [34]:

3ReO3 → Re2O7 +ReO2.

We controlled th at 5 min intervals, and when the experiment was conducted for less than 20 min, ReO3

did not melt. Hence, our determination was that a minimum of 20 min of running time proved to be
effective in achieving reduction and melting. The typical process of film growth entails the initiation of
nuclei, which then steadily expand into successive layers. As deposition time progresses, the sample is
continuously exposed to thermal energy, leading to nucleation and layer growth, which results in an increase
in sample thickness. However, in the case of materials like ReSe2, it was experimentally observed that
desorption begins to occur after an extended period, typically exceeding 20 min. When the process was
conducted for 25–30 min, no material was generated on the substrate. Consequently, we conducted the
process for 20 min, at which point flakes were observed to form. Therefore, we established the recipe with a
20 min process time, just before desorption [35, 36].

We have confirmed that the growth behavior of ReSe2 crystals depends on the type of growth substrates.
The concentration of precursor at the growth front determines the direction of crystal growth, either
out-of-plane or in-plane [37–40]. In figure 6(a), we confirmed that pyramid-shaped ReSe2 flakes grown in
the out-of-plane direction on SiO2 growth substrates with relatively many dangling bonds on the surface. On
the other hand, on the Al2O3 growth substrate, where the precursor is relatively easy to diffuse, we observed
that film-like ReSe2 was synthesized, as shown in figure 6(b) [40]. In addition, we confirmed ReSe2 of
various morphologies and performed EDS mapping analysis, as shown in Figures S3 and S4. The atomic
percentages reveal that the ratio of Re–Se is approximately 0.03%–0.07%, confirming the presence of Re and
Se. This information can be verified in table S1. Additionally, figures S4(a) and (b) exhibit SEM images of
ReSe2 flakes in various shapes, distinct from the previously observed triangular shape. These images provide
further verification of the deposition of various morphology of ReSe2.

In figures 7(a) and (b), the XPS data for ReSe2 reveal that the binding energies of Re atoms in the 4f 7/2

and 4f 5/2 orbitals were determined to be 40.6 eV and 46.5 eV, respectively. Moreover, the XPS analysis
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Figure 6. Characterization of the composition and structure of the CVD-grown ReSe2 flake (a) SEM images of pyramid shape
ReSe2 grown on Si/SiO2 the scale bar represents 2 µm. (b) SEM Image of Continuous film ReSe2 on Al2O3. The scale bar
represents 2 µm.

Figure 7. (a) (b) Detailed XPS Signals of Re 4f and Se 3d spectra.

Figure 8. (a) TEM Image side view. The scale bar represents 5 nm. (b) TEM Image of atom structure. The scale bar represents
2 nm.

revealed a binding energy of 55 eV for Se atoms in the 3d5/2 orbital [29]. Additionally, the atomic ratio of Re
to Se in the XPS spectra was found to be 1:2.16, providing confirmation of the stoichiometric composition of
ReSe2 in a 1:2 ratio. This observation signifies the production of ReSe2 flakes in the MX2 form.

In figure 8, we utilized TEM to confirm the atomic structure and determine the thickness of the ReSe2
film. Figure 8(a) displays a side view of the image, revealing the atomic arrangement, which verifies the
presence of seven layers bonded together by van der Waals forces. We quantified the total thickness to be
approximately 4.9 nm, with each layer having a thickness of about 0.7 nm [1]. Furthermore, in figure 8(b),
the atomic arrangement structure of planar ReSe2, particularly the DC chain, is elucidated. The characteristic
diamond chain structure of rhenium (Re) can be observed. The planes of the [100] a-axis and [010] b-axis
exhibit a 120-degree difference. This alignment is consistent with the findings reported in previous studies
[3–9].
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4. Conclusion

In this paper, we have identified the optimal conditions for synthesizing ReSe2 in both flake and film forms.
We maximized the synthesis rate by using a substrate tilting boat to ensure a uniform and minimal layer
formation on the substrate front, thereby controlling the boundary layer. Additionally, we optimized the
crucial parameters, such as the amount of Se and the gas within the tube, to synthesize ReSe2 in both flake
and film forms and determined the corresponding process times. To achieve stable deposition, we reduced
the amount of Se, decreased the previously used amount of Ar, eliminated H2, and derived the desorption
time after complete sample reduction, thus enhancing the ReSe2 synthesis rate. Furthermore, we confirmed
the ReSe2 intrinsic properties, such as its anisotropic characteristics, indicating its potential for use in photo
devices. We hope this paper serves as a guide for large-area synthesis of ReSe2. Additionally, we believe that
this material can be utilized to create a variety of spectral components by forming van der Waals
heterostructures, not only for optical and electrical devices but also for applications as the next-generation
semiconductor.
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