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Abstract
In response to increasing flood risks driven by the climate crisis, urban areas require advanced forecasting and informed 
decision-making to support sustainable development. This study seeks to improve the reliability of reservoir-based flood 
forecasting and ensure adequate lead time for effective response measures. The main objectives are to predict hourly down-
stream flood discharge at a reference point, compare discharge predictions from a single reservoir with a four-hour lead time 
against those from three reservoirs with a seven-hour lead time, and evaluate the accuracy of data-driven approaches. The 
study takes place in the Han River Basin, located in Seoul, South Korea. Approaches include two non-deep learning (NDL) 
(random forest (RF), support vector regression (SVR)) and two deep learning (DL) (long short-term memory (LSTM), 
gated recurrent unit (GRU)). Scenario 1 incorporates data from three reservoirs, while Scenario 2 focuses solely on Paldang 
reservoir. Results show that RF performed 4.03% (in R2) better than SVR, while GRU performed 4.69% (in R2) better than 
LSTM in Scenario 1. In Scenario 2, none of the models showed any outstanding performance. Based on these findings, we 
propose a two-step reservoir-based approach: Initial predictions should utilize models for three upstream reservoirs with 
long lead time, while closer to the event, the model should focus on a single reservoir with more accurate prediction. This 
work stands as a significant contribution, making accurate and well-timed predictions for the local administrations to issue 
flood warnings and execute evacuations to mitigate flood damage and casualties in urban areas.

Keywords  Flood forecasting · Data-driven approach · Machine learning · Deep learning · Lead time · Travel time

Introduction

The escalating frequency and severity of extreme weather 
events contribute to a new paradigm of climate-induced cri-
ses, commonly referred to as "global boiling" (IPCC 2022). 
This phenomenon has led to more frequent and intense 
weather events, such as floods and droughts, across vari-
ous regions of the world (Yi et al. 2024). Real-time flood 
forecasting is crucial in flood-prone areas to provide timely 

warnings, allowing for the evacuation of residents and the 
protection of facilities threatened by rapidly rising water lev-
els (Young 2002). Urban catchments, however, pose particu-
lar challenges in ensuring sufficient lead time for emergency 
responses (Li et al. 2017). Lead time is a critical metric in 
flood forecasting, essential for safeguarding both people and 
critical infrastructure (Golding 2009; Han et al. 2007a, b; 
Toth et al. 2000). Accurate and timely flood forecasts are 
indispensable for issuing warnings and enabling effective 
flood emergency responses. Extensive literature focuses on 
improving the accuracy and timing of flood predictions to 
support local administrations in issuing warnings and exe-
cuting evacuations to mitigate flood damage and casualties 
(Borga et al. 2011; Moreno et al. 2013; Paul et al. 2021).

Physics‑based models

Flood forecasting models can be broadly categorized into 
two types: physics-based models and data-driven models. 
The physics-based models simulate flood events by applying 
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physical laws and theoretical principles using hydrological 
and hydraulic data (Goodarzi et al. 2024; Ji et al. 2012). 
These models are based on hydrological principles, solv-
ing equations and boundary conditions to represent river 
hydrological processes (Henonin et al. 2013). Physics-based 
models, such as shallow water model (Ferrari et al. 2023), 
storm water management model (Madrazo-Uribeetxebarria 
et al. 2021), mike urban model (Xu et al. 2023), soil and 
water assessment tool (Rahman et al. 2022), and hydrologic 
engineering center–reservoir system simulation (Chae et al. 
2022), are often used to simulate flood forecasting while 
accounting for the combination of riverine and flooding. 
However, occasionally these models cannot reach reliable 
flood predictions if the parameters are not properly estimated 
(Zhang et al. 2019). These models often demand extensive 
datasets, in-depth parametrization, detailed watershed char-
acteristic analysis, and considerable computational effort 
(Esmaeili-Gisavandani et al. 2023; Yi et al. 2022). Despite 
their wide application in flood forecasting, there has been a 
notable shift toward data-driven approaches due to advances 
in capturing the complex and nonlinear dynamics inherent 
in flood events (Zhou 2024).

Machine learning models

Data-driven approaches, particularly machine learning 
(ML) models, have been investigated for several decades 
and have demonstrated significant potential in earlier stud-
ies (Han et al. 2007a, b; Hsu et al. 1995; Solomatine and 
Ostfeld 2008; Tiwari and Chatterjee 2010). As a result of 
the significant benefits and potential of ML, studies increas-
ingly focus on introducing novel methods and hybridizing 
existing ones to develop more accurate and efficient flood 
forecasting models (Mosavi et al. 2018). Recent studies have 
shown that ML models often outperform traditional statisti-
cal models (Chang et al. 2019) and demonstrate superior 
accuracy in forecasting the parameters required for flood 
prediction (Aziz et al. 2014). The advantages of ML models 
include their ease of implementation, computational effi-
ciency, and reduced complexity compared to physics-based 
models (Tang et al. 2023). Among these algorithms, ANN 
(Gessang and Lasminto 2020; Ghorpade et al. 2021), SVM, 
support vector regression (SVR) (Wu et al. 2019), and wave-
let neural networks (WNN) (Ravansalar et al. 2017) have 
demonstrated efficacy in both short-term and long-term 
flood forecasting. Traditional ML models often struggle 
with capturing complex, nonlinear relationships and han-
dling large, high-dimensional datasets required for accurate 
flood forecasting. Deep learning (DL) overcomes these limi-
tations by automatically learning intricate patterns from vast 
amounts of data, leading to more precise and reliable flood 
predictions (Kumar et al. 2023).

Deep learning models

More recently, DL models have emerged as a promis-
ing extension of ML, offering notable improvements in 
prediction accuracy, scalability, and regional applicabil-
ity for flood forecasting (Costache et al. 2024). Some of 
the widely used DL methods in flood forecasting include 
convolution neural networks (CNN) (Kabir et al. 2020), 
recurrent neural network (RNN) (Cai and Yu 2022), deep 
belief network (DBN), long short-term memory (LSTM) 
(Hu et al. 2018), and gated recurrent unit (GRU) (Nayak 
et al. 2022). These DL algorithms are superior at manag-
ing high-dimensional and spatiotemporal data, which are 
essential variables in flood forecasting (Nevo et al. 2022). 
RNNs have gained considerable interest due to their abil-
ity to capture sequential data effectively, utilizing special-
ized recurrent hidden units (LeCun et al. 2015). Despite 
their utility, traditional RNNs encounter challenges such 
as gradient vanishing and exploding, which make it dif-
ficult to manage long-term sequential data (Bengio et al. 
1994). Numerous studies have demonstrated that LSTM, 
an advanced variant of RNNs, offer superior performance 
in flood prediction (Fang et al. 2021). LSTM models, in 
particular, have been applied to flood forecasting with 
notable success, delivering impressive predictive accuracy 
(Kratzert et al. 2018). However, there remains a scarcity 
of comparative studies analyzing the effectiveness of ML 
versus DL in flood prediction.

Recent advancements and gaps

Recent advancements in flood forecasting have increas-
ingly focused on leveraging ML and DL models. ML 
models, including ANNs, SVMs, and WNNs, have dem-
onstrated superior accuracy and efficiency compared to 
traditional statistical methods. However, DL techniques 
like LSTMs and CNNs have emerged as more powerful 
tools, capable of handling complex, high-dimensional 
data and offering better scalability. The trend is shift-
ing toward hybrid models that combine ML and DL 
approaches to further enhance predictive accuracy and 
regional applicability.

Based on our comprehensive literature review, we have 
identified three critical research gaps that merit further 
investigation. First, while lead time is a crucial factor in 
watershed flood forecasting, particularly for improving 
emergency response and evacuation strategies, there is a 
noticeable lack of studies dedicated to extending lead times 
through the application of advanced data-driven models. 
Second, the Han River flood control office in Seoul, South 
Korea, currently employs the storage function method, a 
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physics-based rainfall-runoff model. Although this model 
is effective, it is both time-consuming and labor-intensive, 
requiring recalibration of model parameters for each new 
flood event. Moreover, the model is not publicly acces-
sible, which limits its broader applicability. Third, there 
has been no study to date that compares the efficacy of 
predictions from a single reservoir with shorter lead times 
against those from three reservoirs with longer lead times 
in the Han River Basin.

This study addresses these research gaps by exploring 
different lead times, developing ML and DL approaches spe-
cifically designed to predict downstream flood discharge, 
and evaluating and comparing models that consider either 
a single or multiple reservoirs for forecasting. Our research 
focuses on developing a model that incorporates upstream 
reservoirs in the Han River Basin, which are critical for flood 
mitigation in Seoul—a region where inaccurate flood fore-
casts could have severe consequences. The main objectives 
of our study are to predict hourly downstream flood dis-
charge at a designated reference point, compare discharge 
predictions from a single reservoir with a four-hour lead 
time against those from three reservoirs with a seven-hour 
lead time, and assess the accuracy of both non-deep learning 
(NDL) and DL models. We specifically develop and com-
pare NDL algorithms, including random forest (RF) and sup-
port vector regression (SVR), against DL algorithms such 
as LSTM and gated recurrent unit (GRU), with the goal of 
enhancing prediction accuracy and minimizing error.

Furthermore, the developed method’s applicability 
extends to any region with upstream flood control reser-
voirs, underscoring its broad relevance. The novelty of this 
study encapsulated in the deployment of a two-step reser-
voir-based approach, aimed to enhance emergency response, 
and planning through data-driven approaches that align with 
sustainability goals. Through a comprehensive assessment of 
data-driven approaches and shedding new light on lead time 
and prediction accuracy, our study catalyzes the advance-
ment of evidence-based decision-making and promotes pro-
gress in sustainable development.

Materials and methods

Study area

The Han River is the major river in Korea, with a basin area 
that is the largest in the country, encompassing 35,770 km2 
(8,455 km2 in North Korea) and a mainstream length of 
508 km (Fig. 1). The Han River is combination of two sepa-
rate rivers: the South Han River and the North Han River. 
The three main river tributaries in the South Han River are 
Seom River (basin area of 1490.1 km2) Cheongmicheon 
Stream (basin area of 595.1  km2), and Gyeongancheon 

Stream (basin area of 531.0 km2). One of the major river 
tributaries in North Han River is Hongcheon River (basin 
area of 1565.8 km2).

Seoul is the capital city and the largest metropolis of 
South Korea. As of 2023, the city spans an area of approxi-
mately 605.2 km2 with a population of around 9.7 million 
people. Seoul experiences a monsoon season typically start-
ing in late June and lasting until late August. During this 
period, the city receives most of its annual precipitation. The 
annual precipitation averages around 1,370 mm, with July 
being the wettest month.

On August 2022, South Korea, especially the capi-
tal city, Seoul, experienced the heaviest rainfall and large 
scale floods in 80 years (Lee et al. 2023). In July 2023, the 
heavy storm in South Korea, especially in Han River Basin, 
resulted in severe flooding in Seoul. This incident under-
scored the importance of flood forecasting to prevent dis-
asters that cause loss of human life and property. The Han 
River Basin has three multipurpose reservoirs, including the 
Chungju, Soyanggang, and Hoengseong, facilitating various 
operations such as flood control, water supply, navigation, 
and power generation. Other than multipurpose reservoirs, 
Han River Basin has hydropower reservoirs, including Goe-
san, Hwacheon, Chuncheon, Uiam, Cheongpyeong, and 
Paldang.

The study area focuses on the Chungju, Soyanggang, 
Hwacheon, and Paldang Reservoirs (Table 1). Constructed in 
1985, Chungju Reservoir serves multiple purposes, includ-
ing flood control, water supply, and hydropower generation. 
Soyanggang Reservoir, established in 1973, functions as 
a critical flood barrier for downstream regions of the Han 
River. Hwacheon Reservoir, dating back to 1944, primarily 
serves hydropower generation while maintaining flood con-
trol capabilities. These reservoirs are crucial for flood con-
trol in Seoul owing to their significant capacities for flood 
regulation. Built in 1974, the Paldang Reservoir is located 
at the confluence of the South Han River and North Han 
River near Seoul. The Paldang Reservoir is included due to 
its direct and significant impact on Seoul’s flood dynamics, 
despite its limited flood control capacity. The Hoengseong 
Reservoir, being a multipurpose facility with limited stor-
age capacity for extensive flood control, is excluded. The 
Chuncheon, Uiam, Cheongpyeong, and Gwangdong Res-
ervoirs are considered to have minimal capacities for flood 
mitigation.

Workflow

Figure 2 shows the comprehensive flowchart, spanning 
from data collection to the implementation of flood fore-
casting models. Utilizing publicly accessible data sources, 
we collect and preprocess data from 2006 to 2023, identify-
ing 13 severe flood events characterized by the opening of 
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Fig. 1   Study area map of the Han River Basin, highlighting the Chungju, Soyanggang, Hwachoen, Paldang Reservoirs, and the Han River 
Bridge

Table 1   Characteristics and 
capacities of selected reservoirs. 
The information is extracted 
from the water resources 
management information 
system website (http://​www.​
wamis.​go.​kr/)

Name Unit Chungju Hwacheon Soyanggang Paldang

Type na Multi-purpose Hydropower 
generation

Multi-purpose Hydro-
power 
genera-
tion

Catchment area km2 6,648.0 3,901.0 2,703.0 23,800.0
Flood water level EL.m 145.0 183.0 198.0 27.0
Normal high water level EL.m 141.0 181.0 193.5 25.5
Normal high water level storage MCM 2,385.2 na 2,543.8 na
Restricted water level EL.m 138.0 175.0 190.3 na
Flood control storage MCM 616.0 213.0 770.0 na
Low water level EL.m 110.0 156.8 150.0 25.0
Low water level storage MCM 454.0 360.4 693.6 226.0
Total storage MCM 2,750.0 1,018.0 2,900.0 244.0
Conservation storage MCM 1,789.0 658.0 1,900.0 18.0
Dead storage MCM 100.0 360.4 280.0 68.3
Installed generation capacity kW 412,000.0 108,000.0 200,000.0 120,000.0
Spillway design release CMS 20,000.0 9,500.0 14,200.0 34,400.0

http://www.wamis.go.kr/
http://www.wamis.go.kr/
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reservoir spillway gates (Sects. "Data collection and pre-
processing" and "Flood events"). Specifically, we designate 
the two most recent storm events from 2022 (Aug 26–Sept 
11) and 2023 (Sept 5–23) as the testing dataset. Employing 
ML algorithms, we train models to focus on accurate dis-
charge predictions for the reference point (Han River Bridge) 
(Sect. "Machine learning models and parameterization"). 
Both R and Python serve as the platforms for their exten-
sive libraries and frameworks, facilitating analysis, model 
training, and testing.

We conduct hyperparameter optimization for each ML 
model and choose optimal sets of hyperparameters for dif-
ferent ML methods (Sect. "Machine learning models and 
parameterization"). The study organizes into 16 cases, 
derived from four different scenarios (1.1, 1.2, 2.1, and 2.2) 
and four ML algorithms. Model selection is based on four 
distinct performance metrics (Sects. "Scenarios" and "Model 
performance evaluation"). Based on these metrics, we iden-
tify the top-performing model for each scenario.

Data collection and preprocessing

The primary dataset encompasses reservoir release and 
streamflow discharge information. Historical hourly reser-
voir release data for the Chungju, Soyanggang, Hwacheon, 
and Paldang Reservoirs were obtained from the Han River 
Flood Control Office (http://​www.​wamis.​go.​kr/). Concur-
rently, historical hourly discharge data for gauging stations 

in Seom River, Cheongmicheon Stream, Gyeongancheon 
Stream, Hongcheon River, and Han River Bridge were col-
lected from the same source (http://​www.​hrfco.​go.​kr/​web/​
flood​Page/​flood​Class_1.​do).

The Han River Bridge, originally built in 1917, is a 
prominent infrastructure landmark in Seoul that connects 
the highly developed urban areas. In 2005, an automatic dis-
charge measuring instrument was installed at this location, 
providing real-time data on both the discharge and the water 
level of the Han River. This technological enhancement 
further underscores the importance of the bridge as an apt 
barometer for monitoring river conditions, especially dur-
ing potential flood events, issuing flood warnings for Seoul. 
Flood warnings are triggered when the water level at Han 
River Basin approaches 50% of the planned flood volume, 
while flood alerts are initiated at 70%. Given its pivotal role 
in connecting major city districts, its susceptibility to chang-
ing river conditions, and its equipped monitoring capabili-
ties, the Han River Basin serves as an ideal reference point 
in our study, offering valuable insights into flood forecasting 
for Seoul.

Figure 3 illustrates the flow data observed from Han River 
Basin from July 2005 to July 2023. The planned flood vol-
ume for Han River Basin is 37,000 cubic meters per sec-
ond (CMS), the discharge corresponding to the alert level 
is 25,900 CMS, and the discharge for the warning level is 
18,500 CMS. The largest flood during this period occurred 
on 07/16/2005 at 8 pm with the maximum discharge of 

Fig. 2   Flowchart of flood event identification and predictive modeling

http://www.wamis.go.kr/
http://www.hrfco.go.kr/web/floodPage/floodClass_1.do
http://www.hrfco.go.kr/web/floodPage/floodClass_1.do


	 Applied Water Science (2024) 14:237237  Page 6 of 23

31,202 CMS. During this period (2005–2023), there was one 
instance that exceeded the alert level, and there were three 
occurrences of floods that exceeded the warning level. The 
comprehensive data depicted in Fig. 3 further emphasize 
the strategic importance of the flood management system 
in Seoul.

After data collection, we address the potential impact of 
variable scales on ML models. Disparities in variable scales 
might lead some models to be biased toward attributes with 
broader scales, often overshadowing those with narrower 
scales. Data scaling transforms numerical feature values into 
a comparable range, reducing bias in ML models. Common 
scaling techniques include standard scaling, min–max scal-
ing, and robust scaling. The min–max scaler is a preprocess-
ing method that scales numerical features to a specific range, 
typically between 0 and 1. We use the min–max scaler as 
it keeps the relative relationships between data points by 
linearly scaling them within a defined range. This approach 
is especially effective for algorithms that are sensitive to 
feature scale, such as support vector machines and neural 
networks.

Flood events

From 2006 to 2023, our study identifies 13 severe flood 
events that required the opening of reservoir spillway 
gates. The total duration for 13 severe flood events is 
257 days and 5,688 h (Table 2). Tables 3 and 4 further 
elaborate on these flood events by providing the maximum 
reservoir release across four reservoirs and the maximum 
discharge in four main river tributaries, respectively. We 
use 11 flood events as training dataset and two most recent 
storm events from 2022 (Aug 26–Sept 11) and 2023 (Sept 
5–23) as testing dataset. The test dataset includes the larg-
est flood events. This approach was based on the rationale 

that using the larger peak flood discharge events for train-
ing and the smaller events for testing appeared to enhance 
the model’s performance.

Scenarios

Figure 4 shows the different flood discharge travel times 
from reservoirs and gauging stations in the tributaries to 
the Han River Bridge. The flood discharge travel time refers 
to the duration required for flood discharge to flow from an 
upstream location to a reference point. To address fluctua-
tions in flood discharge across selected flood events, we cal-
culate average peak flood discharge as a representative met-
ric. Using data from Table 5, the study estimates the flood 
discharge travel time from each of these locations to the Han 

Fig. 3   Discharge from the Han River Bridge from 2005 to 2023

Table 2   Summary of the 13 flood events (2006–2023). The entire 
flood events duration is 257 days, equivalent to 5,688 h of data

Event Year Start date End date Duration 
(Days)

Hours

1 2006 7–11 8–6 27 648
2 2007 8–4 8–21 18 432
3 2007 9–12 9–20 9 216
4 2009 7–8 7–22 15 360
5 2010 9–9 9–28 20 480
6 2011 6–24 7–19 26 624
7 2011 7–20 8–6 18 432
8 2017 8–22 8–31 10 240
9 2018 9–2 9–9 8 192
10 2020 7–26 8–19 25 600
11 2022 8–1 8–25 25 600
12 2022 8–26 9–11 17 408
13 2023 7–5 7–23 19 456
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River Bridge. Table 5 presents the flood discharge travel 
times corresponding to reservoir releases between specified 
locations. Paldang Reservoir is 36.3 km away from the Han 
River Bridge. The other reservoirs—Chungju, Hwacheon, 
and Soyanggang—are located at distances of 150.6 km, 
158.1 km, and 127.1 km, respectively.

The study calculates an average peak discharge of 11,561 
CMS for 13 flood events at Paldang Reservoir. Given that 
this average falls between 9,500 CMS and 16,200 CMS, an 
intermediate travel time of four hours is adopted for Pal-
dang Reservoir and 16 h for the other reservoirs (Table 5). 
The flood discharge travel time from gauging stations 
from Gyeongancheon Stream, Cheongmicheon Stream, 
Seom River, and Hongcheon River to Han River Bridge is 

estimated as approximately seven hours, 11 h, 13 h, and nine 
hours, respectively.

We present a flood forecasting model to predict hourly 
flood discharge at Han River Bridge. The independent vari-
ables are the release data from reservoirs and discharge data 
from three tributaries in the South Han River and a tributary 
in the North Han River. The dependent variable is stream-
flow discharge at the Han River Bridge, a reference point in 
the Han River. The four scenarios include Scenario 1.1, 1.2, 
2.1, and 2.2.

Scenario 1

Scenario 1 incorporates data from three reservoirs—Chun-
gju, Hwacheon, and Soyanggang—and stream discharge data 
from four river tributaries (Seom River, Cheongmicheon 
Stream, Gyeongancheon Stream, and Hongcheon River) to 
predict discharge at the Han River Bridge.

Scenario 1.1 incorporates seven independent variables, 
while Scenario 1.2 includes ten independent variables 
(Table 6). The independent variables in Scenario 1.1 com-
prise reservoir release data from Chungju, Hwacheon, and 
Soyanggang, along with discharge data from Seom River, 
Cheongmicheon Stream, Gyeongancheon Stream, and 
Hongcheon River.

Scenario 1.2 augments these seven variables with three 
additional variables, accounting for an extra hour of travel 
time from the three reservoirs to the Han River Bridge. An 
extra hour is added to account for the uncertainty in the 
estimated flood discharge travel time.

Table 3   Maximum reservoir release of the 13 severe flood events for 
the four reservoirs between 2006 and 2023

Event Chungju 
reservoir 
(CMS)

Soyanggang 
Reservoir 
(CMS)

Hwacheon 
reservoir 
(CMS)

Paldang 
reservoir 
(CMS)

1 9052.8 1213.2 2014.0 23,062.5
2 2107.1 227.2 2027.4 10,017.1
3 3510.4 219.0 192.4 5654.7
4 2494.3 245.9 929.2 15,500.1
5 2003.2 217.7 1546.4 9417.0
6 3794.0 221.1 307.1 12,170.8
7 763.0 1567.7 2917.4 17,832.5
8 1507.8 1485.4 1344.0 7925.0
9 1568.2 0.0 194.0 4589.0
10 4003.6 2711.4 3567.0 18,179.0
11 2082.0 600.7 1642.1 14,425.4
12 1469.3 254.0 1161.0 12,811.8
13 6061.6 202.8 185.0 12,257.1

Table 4   Maximum discharge 
of the 13 severe flood events 
for the four river tributaries and 
Han River Bridge between 2006 
and 2023

Event Seom river (CMS) Cheongmicheon 
stream (CMS)

Gyeongancheon 
stream (CMS)

Hongcheon 
river (CMS)

Han River 
Bridge 
(CMS)

1 8177.5 2174.4 1539.6 4742.6 31,202.4
2 2756.5 783.6 354.3 2811.5 10,584.2
3 56.8 562.1 6.8 1009.5 6027.3
4 5164.7 1161.0 4649.9 4089.8 17,453.4
5 4224.8 1070.1 1941.9 1462.5 13,042.5
6 3638.2 914.7 1360.6 1172.7 14,152.8
7 3479.3 773.5 2588.3 1816.8 22,831.3
8 825.8 276.4 347.6 1256.2 7858.3
9 497.4 218.8 42.6 106.3 3760.2
10 1918.6 1594.3 1614.4 2333.8 24,922.5
11 3965.7 484.7 2483.0 3800.9 18,693.7
12 1207.7 816.0 937.1 2155.5 15,074.3
13 1860.3 1213.6 1209.2 1034.9 13,717.8
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Scenario 2

Scenario 2 focuses solely on Paldang Reservoir, given it is 
the closest upstream reservoir to the Han River Bridge with-
out significant intervening tributaries between them.

Scenario 2.1 solely considers the release data from Pal-
dang Reservoir as the independent variable, while Scenario 
2.2 extends this by including the reservoir release an hour 
earlier. Incorporating an additional hour account for the 
uncertainty in estimating flood discharge travel time.

Machine learning models and parameterization

This section introduces both NDL and DL models, specifi-
cally focusing on RF, SVR, LSTM, and GRU. These algo-
rithms have been chosen for their distinctive strengths in 

modeling complex relationships, handling high-dimensional 
data, and recognizing patterns over sequences. The follow-
ing subsections detail each model’s structure, functionality, 
advantages, disadvantages, and hyperparameter tuning.

Random forest

RF is an ensemble learning algorithm that builds multiple 
decision trees to enhance prediction accuracy and robust-
ness (Breiman 2001). Its architecture involves aggregating 
the predictions from a diverse set of decision trees, each 
trained on different subsets of the data, to produce a final, 
more accurate prediction. Its advantages include modeling 
complex relationships without intensive feature engineering, 
handling mixed data types, and providing insights through 
feature importance (Probst et al. 2019). However, it can be 

Fig. 4   Variation in flood discharge travel time to the Han River Bridge from multiple reservoirs and tributaries

Table 5   Reservoir release and travel times for various distances between selected locations. The information is extracted from the Han River 
Flood Control Office (http://​www.​hrfco.​go.​kr/​main.​do)

Start End Distance Reservoir release (CMS) and travel time (Hr)

(Km) 1,000 2,000 3,000 5,500 7,500 9,500 16,200 25,000 34,400

Paldang Han River Bridge 36.3 7.5 6.6 6.1 5.3 4.8 4.5 3.8 3.3 2.8
Chungju Paldang 114.3 36.5 114.3 18.0 16.5 15.7 14.4 13.7 13.2 12.0

Han River Bridge 150.6 36.3 150.6 25.5 23.1 21.7 19.6 18.5 17.7 15.9
Hwacheon Paldang 121.8 24.5 121.8 16.5 14.5 13.3 11.9 11.0 10.2 –

Han River Bridge 158.1 36.3 158.1 24.0 21.1 19.4 17.2 15.8 14.8 –
Soyanggang Paldang 90.8 24.5 90.8 12.8 11.2 10.3 9.2 – – –

Han River Bridge 127.1 36.3 127.1 20.3 17.8 16.4 14.5 – – –

http://www.hrfco.go.kr/main.do
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computationally intensive, especially with large datasets 
(Athey et al. 2019). Additionally, while individual features’ 
significance is interpretable, the collective decision-making 
process can be complex and challenging to interpret. It may 
also underperform in high-dimensionality sparse tasks com-
pared to linear models or DL. In this case study, we focus on 
tuning two parameters, the mtry and the ntree parameters, 
that have the following effects on our random forest model. 
There are many other parameters, but these two parameters 
are perhaps the most likely to have the biggest effect on our 
final accuracy. mtry is the number of variables randomly 
sampled as candidates at each split. There are several com-
mon heuristics for choosing a value for mtry and ntree 
(Abdelali et al. 2019). mtry is equal to one-third of the total 
number of features, where we test mtry values of 2, 3, 6, 
and 7. ntree is the number of trees to grow. Four values are 
selected from 500 to 2,000 with 500 intervals based on the 
literature review (Dessì et al. 2013).

Support vector regression

The SVR is a type of supervised ML algorithm that is 
derived from the SVM methodology (Smola & Schölkopf 
2004). Its architecture involves finding a hyperplane in a 
high-dimensional space that best fits the data while main-
taining a margin of tolerance for errors, allowing for robust 
predictions of continuous outcomes. Instead of classifica-
tion, SVR focuses on predicting a continuous outcome varia-
ble. It operates by finding a hyperplane which represents the 
best possible fit to the given data, ensuring that deviations 
from this fit remain as minimal as possible. The primary 

advantage of SVR is its ability to manage nonlinear relation-
ships effectively without the need to specify these relation-
ships explicitly (Awad & Khanna 2015). However, a notable 
disadvantage is that SVR can be computationally intensive, 
especially for larger datasets, making it less scalable com-
pared to some other regression methods (Smola & Schölkopf 
2004). The regularization parameter (C), the tolerance 
threshold (ε), and the width of the radial basis function (ϒ) 
are the key hyperparameters for SVR. The best hyperparam-
eters were determined using a grid-search procedure, we 
tested the following set: C = from 0.1 to 0.5, ε = from 0.1 to 
1, and ϒ = 1–10. These specific ranges for hyperparameters 
were chosen based on the literature (Tsirikoglou et al. 2017).

Long short‑term memory

The LSTM is a specialized form of RNN designed to recog-
nize and remember patterns over long sequences (Hochreiter 
& Schmidhuber 1997). Its architecture includes a unique 
cell state and gating mechanisms—input, output, and forget 
gates—that allow it to selectively remember or forget infor-
mation over time, effectively managing long-term depend-
encies. This capability is attributed to its unique cell state 
structure, which effectively tackles the vanishing gradient 
problem encountered in traditional RNN. LSTMs are par-
ticularly well suited for tasks involving sequential data, such 
as time series forecasting, where context from earlier inputs 
is essential for future predictions. A primary advantage of 
LSTM is its ability to retain memory from long sequences, 
making it particularly effective for tasks that require under-
standing over extended time intervals (Graves 2012). 

Table 6   Forecasting scenarios 
for Han River Bridge discharge 
based on reservoir releases and 
river or stream discharge data

Scenario Independent variables Dependent variable

1.1 Chungju reservoir release Rch, t-9 Han River Bridge stream discharge 
Dha, t+7Soyanggang reservoir release Rso, t-9

Hwacheon reservoir release Rhw, t−9

Seom river discharge Dse, t−6

Cheongmi stream discharge Dcm, t−4

Gyeongan stream discharge Dgy, t

Hongcheon river discharge Dho, t−2

1.2 Chungju reservoir release Rch, t−8, Rch, t−9 Han River Bridge stream discharge 
Dha, t+7Soyanggang reservoir release Rso, t−8, Rso, t−9

Hwacheon reservoir release Rhw, t−8, Rhw, t−9

Seom river discharge Dse, t−6

Cheongmi stream discharge Dcm, t−4

Gyeongan stream discharge Dgy, t

Hongcheon river discharge Dho, t−2

2.1 Paldang reservoir release Rpa, t Han River Bridge stream discharge 
Dha, t+4

2.2 Paldang reservoir release Rpa, t, Rpa, t−1 Han River Bridge stream discharge 
Dha, t+4
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However, a disadvantage is its computational complex-
ity. Training LSTMs can be time-consuming and requires 
considerable computational resources, especially for larger 
datasets or longer sequence lengths (Sainath et al. 2015). 
We tune variety of hyperparameters for LSTM, including 
the number of nodes, hidden layers, maximum iteration, 
number of units in a dense layer, dropout, activation func-
tion, learning rate, number of epochs (or the number of 
iterations), batch size, optimizer, and bidirectional. The key 
hyperparameters are the number of nodes, hidden layers, and 
maximum iteration. The initial hyperparameters were deter-
mined based on the literature, and we tested the following 
set: hidden layers ranging from 1 to 3, the number of nodes 
set at 50, 64, and 128, and a maximum of iterations ranging 
from 500 to 2,000 with 500 increments (Greff et al. 2017). 
Through trial and error, the hyperparameters were adjusted 
by increasing or decreasing the values until further changes 
no longer significantly improved the results.

Gated recurrent unit

The GRU is a type of RNN architecture introduced to 
address the vanishing gradient problem inherent in tradi-
tional RNN (Dey and Salem 2017). Its architecture incorpo-
rates two gating mechanisms—update and reset gates—that 
regulate the flow of information, allowing the model to cap-
ture long-term dependencies more efficiently. Designed with 
update and reset gates, GRU effectively captures long-term 
dependencies in sequential data by adaptively controlling 
the flow of information. One notable advantage of GRU is 
its efficiency; with fewer parameters than LSTM, it often 
achieves comparable performance while requiring less com-
putational overhead (Zhao et al. 2018). However, the sim-
plifications in the GRU architecture might lead to slightly 
inferior performance compared to LSTM, especially when 
large amounts of training data are available (Wang et al. 
2018). The GRU shares the same key hyperparameters and 
selection ranges as the LSTM.

Model performance evaluation

The coefficient of determination (R2), root mean square error 
(RMSE), and mean absolute error (MAE) are critical metrics 
that collectively evaluate the predictive accuracy and reli-
ability of models.

R2 is a statistical measure that represents the proportion 
of the variance in the dependent variable that is predict-
able from the independent variable(s) (Nagelkerke 1991). 

It provides a gauge of how well the observed outcomes are 
replicated by the model, based on the proportion of total 
variation of outcomes explained by the model. The value 
of R2 lies between 0 and 1, with higher values indicating 
a better fit of the model to the data. Equation (1) is for 
calculating the R2:

where SSR is the sum of the squared differences between 
the observed and predicted values. SST is the sum of the 
squared differences between the observed values and the 
mean of observed values.

Root mean square error (RMSE) and mean absolute 
error (MAE) are two commonly used metrics for evalu-
ating the performance of predictive models (Willmott & 
Matsuura 2005). RMSE is the square root of the average 
of squared differences between observed and predicted 
values. Equation (2) is for calculating RMSE given as:

where yi is the actual value, ŷi is the predicted value, and n 
is the total number of observations.

On the other hand, MAE is the average of the absolute 
differences between observed and predicted values. While 
both RMSE and MAE provide a measure of the overall 
error of the model, RMSE gives a relatively high weight 
to large errors due to the squared term in the formula, 
making it more useful when large errors are particularly 
undesirable. MAE, in contrast, is less sensitive to outliers. 
Equation (3) is for calculating MAE:

The Nash–Sutcliffe efficiency (NSE) is a commonly 
used statistical indicator for the predictive accuracy of 
hydrological models (Krause et al. 2005). It quantifies the 
proportion of data variance captured by the model. The 
NSE ranges from −∞ to 1, with a value of 1 indicating 
perfect model predictions. A value of 0 means the model 
is no better than using the mean of the observed data, and 
values less than zero show the model predictions are worse 
than using the mean of the observed data. Equation 4 is 
for calculating NSE:

(1)R2 = 1 −
Sum of Squares of Residuals(SSR)

Total Sum of Square(SST)

(2)RMSE =

√√√
√1

n

n∑
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)2

(3)MAE =
1

n
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where ŷi represents model predictions, and y is the mean of 
observed data.

Results

Hyperparameter optimization

For this analysis, we calculated four performances indices 
to evaluate the ML model performances across four differ-
ent scenarios (Table 7). Table 8 represents the best hyper-
parameter combinations for four ML models across four 
scenarios. For RF, the primary hyperparameters were mtry 
and ntree. The smallest values for these hyperparameters 
yielded the most favorable outcomes across all scenarios. 
In the case of SVR, the key hyperparameters were the reg-
ularization parameter (C), the tolerance threshold (ε), and 

the width of the radial basis function (ϒ). Optimal results 
were obtained with the largest C and the smallest ε; the 
ϒ value was scenario dependent. LSTM required tuning 
of a more extensive set of hyperparameters, including the 
number of hidden layers, nodes, and maximum iterations. 
Scenario 1.2, having the largest number of independent 
variables, required a larger number of hidden layers and 
nodes for optimal performance. The optimal number of 
iterations was found to be 500, although 1,000 iterations 
provided adequate model runtime. Larger iteration counts 
(e.g., 1,500, 2,000) did not yield significant improvements. 
GRU, primarily used in Scenarios 2.1 and 2.2, required 
fewer hidden layers and nodes due to the smaller number 
of independent variables compared to Scenarios 1.1 and 
1.2.

Table 7   Performance indices 
of four ML models across four 
scenarios in training and testing

ML Index Scenario 1.1 Scenario 1.2 Scenario 2.1 Scenario 2.2

Train Test Train Test Train Test Train Test

RF R2 0.997 0.857 0.996 0.874 0.992 0.925 0.994 0.947
RMSE 261.5 1299.7 268.2 1219.7 399.3 618.4 343.1 794.0
MAE 115.4 748.2 125.0 719.4 245.5 942.2 206.9 538.9
NSE −298.6 −6.01 −283.9 −6.95 −127.5 −12.3 −173.1 −17.7

SVR R2 0.960 0.841 0.968 0.820 0.956 0.972 0.957 0.971
RMSE 910.1 1370.4 815.4 1459.1 950.0 578.7 939.2 582.5
MAE 443.4 746.0 408.7 813.5 583.7 366.8 576.6 366.8
NSE −23.7 −5.30 −29.8 −4.56 −21.7 −34.3 −22.2 −33.8

LSTM R2 0.918 0.873 0.926 0.865 0.955 0.981 0.986 0.990
RMSE 1297.3 1245.9 1242.2 1312.8 1021.9 513.6 1012.3 767.2
MAE 718.0 660.0 704.1 722.8 621.5 339.7 520.4 382.3
NSE 0.911 0.865 0.920 0.854 0.939 0.979 0.943 0.954

GRU​ R2 0.933 0.920 0.934 0.901 0.955 0.981 0.985 0.990
RMSE 1206.4 1158.6 1247.7 1381.6 1051.7 500.1 987.8 749.6
MAE 736.4 726.9 788.4 780.6 642.0 324.8 510.1 381.6
NSE 0.923 0.901 0.925 0.874 0.933 0.979 0.945 0.956

Table 8   Best hyperparameter 
combinations for four ML 
models across four scenarios

ML Scenario 1.1 Scenario 1.2 Scenario 2.1 Scenario 2.2

RF mtry = 2
ntree = 500

SVR C = 10 C = 10
ε = 0.1 ε = 0.1
ϒ = 0.1 ϒ = 0.5

LSTM Hidden layer = 1 Hidden layer = 2 Hidden layer = 1
# of nodes = 50 # of nodes = 128, 64 # of nodes = 50
Max iteration = 1,000 Max iteration = 1,000 Max iteration = 1,000

GRU​ Hidden layer = 2 Hidden layer = 1
# of nodes = 128, 64 # of nodes = 50
Max iteration = 1,000 Max iteration = 1,000
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Scenario 1.1 vs. Scenario 1.2

Scenario 1.1 employs seven independent variables, whereas 
Scenario 1.2 utilizes an extended set of ten independent vari-
ables. The comparative performance of these scenarios is 
summarized in Table 9, where positive percentage values 
in R2 and NSE indicate that Scenario 1.1 outperforms Sce-
nario 1.2 by the corresponding percentage. Key performance 
metrics are also visualized in Fig. 5, which shows flood dis-
charge estimations at the Han River Bridge, and in Fig. 6, 
which provides a detailed comparison between observed and 
predicted hourly discharges at the same location. Addition-
ally, Fig. 7 highlights the performance of the GRU model, 
which emerged as the top performer.

In the RF model, Scenario 1.2 outperformed Scenario 1.1 
in both training and testing phases. Specifically, Scenario 1.2 
improved upon Scenario 1.1 by 8.34% (MAE) and 2.55% 
(RMSE) in training, though it slightly underperformed in 
R2 by 0.017%. In the testing phase, Scenario 1.2 showed a 
1.98% improvement in R2 but underperformed by 6.16% in 
RMSE and 3.84% in MAE.

For the SVR model, Scenario 1.2 performed better dur-
ing training, surpassing Scenario 1.1 by 0.831% (R2), 10.4% 
(RMSE), and 7.82% (MAE). However, in the testing phase, 
Scenario 1.1 demonstrated better performance, improving by 
2.53% in R2, 6.47% in RMSE, and 9.05% in MAE.

In the LSTM model, Scenario 1.1 excelled in both train-
ing and testing. During training, Scenario 1.1 outperformed 
Scenario 1.2 by 4.25% (RMSE) and 1.94% (MAE) but was 
slightly behind in R2 by 0.871% and NSE by 0.99%. In 

testing, Scenario 1.1 consistently outperformed Scenario 
1.2 across all metrics, with improvements of 0.916% (R2), 
5.37% (RMSE), 9.51% (MAE), and 1.27% (NSE).

The GRU model showed that Scenario 1.1 dominated in 
both training and testing phases. Scenario 1.1 outperformed 
Scenario 1.2 by 3.41% (RMSE) and 7.07% (MAE) during 
training, though it lagged slightly in R2 and NSE by 0.11% 
and 0.22%, respectively. In testing, Scenario 1.1 achieved 
significant gains with improvements of 2.07% in R2, 19.3% 
in RMSE, 7.38% in MAE, and 3.00% in NSE.

Given the negative NSE values for the RF and SVR mod-
els, as shown in Table 7, these models were excluded from 
further comparisons. Overall, the results indicate that Sce-
nario 1.1 outperformed Scenario 1.2 in both the LSTM and 
GRU models.

Scenario 2.1 vs. Scenario 2.2

Scenario 2.1 uses a single independent variable, whereas 
Scenario 2.2 integrates two independent variables. Table 10 
provides a comparative summary of model performance 
indices, highlighting the percentage differences between 
Scenarios 2.1 and 2.2. Positive percentage values in R2 and 
NSE indicate that Scenario 2.1 outperforms Scenario 2.2 
by the corresponding percentage. The performance of vari-
ous models is visualized in Fig. 8, which shows flood dis-
charge estimates. Figure 9 presents a detailed comparison of 
observed and predicted hourly flood discharge, while Fig. 10 
illustrates the results for the GRU model, which was the 
best-performing model.

For the RF model, Scenario 2.2 outperformed Scenario 
2.1 during training with improvements of 0.205% in R2, 
14.1% in RMSE, and 15.7% in MAE. However, in the test-
ing phase, Scenario 2.1 excelled, showing a slight improve-
ment of 0.039% in R2 and a significant reduction of 28.4% in 
RMSE, although it lagged by 42.8% in MAE. This indicates 
that while Scenario 2.2 performed better during training, 
Scenario 2.1 demonstrated superior performance in the test-
ing phase.

For the SVR model, Scenario 2.2 showed better perfor-
mance during training, advancing by 0.103% in R2, although 
it declined by 1.13% in RMSE and 1.22% in MAE. In the 
testing phase, Scenario 2.1 surpassed Scenario 2.2 by 
0.039% in R2, but fell short by 0.667% in RMSE and 0.009% 
in MAE. Therefore, while Scenario 2.2 excelled in training, 
Scenario 2.1 took the lead in testing, indicating its potential 
for better generalization.

For the LSTM model, Scenario 2.2 performed better dur-
ing training, with improvements of 3.25% in R2, 0.939% in 
RMSE, 16.3% in MAE, and 0.43% in NSE. However, in 
the testing phase, Scenario 2.1 outperformed Scenario 2.2 
by 49.9% in RMSE, 17.5% in MAE, and 2.35% in NSE, 

Table 9   Comparative performance metrics of scenarios 1.1 and 1.2 
across different machine learning models

ML Index Scenario 1.1 & 1.2

Train Test

RF R2 0.017% −1.98%
RMSE −2.55% 6.16%
MAE −8.34% 3.84%
NSE – –

SVR R2 −0.831% 2.53%
RMSE 10.4% −6.47%
MAE 7.82% −9.05%
NSE – –

LSTM R2 −0.871% 0.916%
RMSE 4.25% −5.37%
MAE 1.94% −9.51%
NSE −0.988% 1.27%

GRU​ R2 −0.107% 2.07%
RMSE −3.42% −19.3%
MAE −7.07% −7.38%
NSE −0.217% 3.00%
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although it lagged by 0.917% in R2. This suggests that Sce-
nario 2.2 was superior in training, but Scenario 2.1 demon-
strated better performance in testing.

Similarly, for the GRU model, Scenario 2.2 outperformed 
Scenario 2.1 during training with gains of 3.14% in R2, 
6.07% in RMSE, 20.5% in MAE, and 1.29% in NSE. How-
ever, Scenario 2.1 prevailed in the testing phase, with sig-
nificant improvements of 49.9% in RMSE, 17.49% in MAE, 
and 2.35% in NSE, although it lagged by 0.917% in R2. This 
indicates that Scenario 2.2 excelled in training, while Sce-
nario 2.1 was superior in testing, reflecting its potential for 
greater generalizability.

For both the LSTM and GRU models, Scenario 2.2 
showed better performance in training, while Scenario 2.1 

had better results in testing. These findings suggest that Sce-
nario 2.1 may have greater generalizability, which is criti-
cal for real-world flood forecasting applications. The results 
highlight the complexity and trade-offs involved in selecting 
the optimal scenario, as both Scenarios 2.1 and 2.2 showed 
excellent results with minimal differences in the model per-
formance indices.

Scenario 1 vs. Scenario 2

In comparing model performances for Scenarios 1 and 2, 
we focus on sub-scenarios 1.1, 2.1, and 2.2 for the LSTM 
and GRU models, while excluding RF and SVR due to their 
negative NSE values. Table 11 provides a summary of the 

Fig. 5   Comparison of flood discharge predictions at Han River Bridge using RF, SVR, LSTM, and GRU models
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average percentage differences in key performance indices 
between sub-scenarios 1.1 and 2.1, as well as 1.1 and 2.2. 
Positive percentage values in R2 and NSE indicate that Sce-
nario 1.1 outperforms Scenarios 2.1 and 2.2 by the corre-
sponding margin, while negative percentage values in RMSE 
and MAE signify that Scenario 1.1 has superior performance 
over Scenarios 2.1 and 2.2 by the specified percentage.

For the LSTM model, Scenario 2.1 outperformed Sce-
nario 1.1 in both training and testing phases. Specifically, 
during training, Scenario 2.1 showed improvements of 
4.03% in R2, 21.2% in RMSE, 13.4% in MAE, and 3.07% 
in NSE. In testing, Scenario 2.1 performed even better, 
surpassing Scenario 1.1 by 12.4% in R2, 58.8% in RMSE, 

48.5% in MAE, and 13.2% in NSE. Similarly, Scenario 2.2 
also yielded better results than Scenario 1.1, with training 
improvements of 7.41% in R2, 22.0% in RMSE, 27.5% in 
MAE, and 3.51% in NSE. In testing, Scenario 2.2 continued 
to outperform Scenario 1.1 with gains of 13.4% in R2, 38.4% 
in RMSE, 42.1% in MAE, and 10.3% in NSE. These results 
indicate that both Scenarios 2.1 and 2.2 performed better 
than Scenario 1.1 in training and testing, with Scenario 2.2 
showing the strongest overall performance.

For the GRU model, Scenario 2.1 also outperformed 
Scenario 1.1 in both training and testing. During training, 
Scenario 2.1 showed improvements of 2.36% in R2, 12.8% 
in RMSE, 12.8% in MAE, and 1.08% in NSE. In testing, 

Fig. 6   Comparison of observed and predicted hourly stream discharge at the Han River Bridge stream gauging station using RF, SVR, LSTM, 
and GRU for scenarios 1.1 and 1.2 in both training and testing
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Scenario 2.1 demonstrated even greater gains, surpassing 
Scenario 1.1 by 6.63% in R2, 56.8% in RMSE, 55.3% in 
MAE, and 8.66% in NSE. Scenario 2.2 also yielded better 
results than Scenario 1.1, with improvements of 5.57% in R2, 
18.1% in RMSE, 30.7% in MAE, and 2.38% in NSE during 
training, and gains of 7.61% in R2, 35.3% in RMSE, 47.5% 
in MAE, and 6.10% in NSE during testing.

Overall, Scenarios 2.1 and 2.2, which utilized Paldang 
Reservoir release data—the reservoir closest to the Han 
River Bridge without significant tributary interference—
resulted in more accurate forecasts.

Machine learning models

Table 12 provides a comprehensive summary that quanti-
fies the relative performance of RF, SVR, LSTM, and GRU 
across various performance indices. In the third and fourth 
columns, positive values for R2 indicate superior perfor-
mance of RF over SVR by the specified percentage, while 
negative values for RMSE and MAE denote better perfor-
mance of RF compared to SVR. Similarly, in the fifth and 
sixth columns, positive values in R2 and NSE indicate that 
LSTM outperforms GRU, while negative values for RMSE 
and MAE signify the superior performance of LSTM over 
GRU.

Fig. 7   Comparison of observed and predicted hourly stream discharge at the Han River Bridge stream gauging station using GRU for scenarios 
1.1 and 1.2 in both training and testing
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When comparing RF and SVR, it is evident that RF out-
performed SVR in all scenarios across the three metrics—
R2, RMSE, and MAE—when excluding negative NSE 
values. This consistently better performance highlights the 
superiority of the RF model over the SVR model in this 
context.

For Scenario 1.1, GRU outperformed LSTM in training, 
showing improvements of 1.63% in R2, 2.56% in MAE, and 
1.32% in NSE, although it lagged by 7.00% in RMSE. In 
testing, GRU continued to outperform LSTM with gains of 
5.38% in R2, 10.1% in MAE, and 4.16% in NSE, despite fall-
ing short by 7.01% in RMSE. Overall, GRU demonstrated 
superior performance in both training and testing for Sce-
nario 1.1.

In Scenario 1.2, GRU outperformed LSTM in training by 
0.857% in R2 and 0.541% in NSE, but did not excel in RMSE 
and MAE, falling short by 0.447% and 10.7%, respectively. 
In testing, GRU showed improvements of 4.00% in R2 and 
2.29% in NSE, while still lagging by 4.98% in RMSE and 
7.40% in MAE. This indicates that GRU generally outper-
formed LSTM, particularly in testing.

For Scenario 2.1, the R2 and NSE values for LSTM and 
GRU were identical. However, LSTM was slightly outper-
formed by GRU during training, with differences of 2.92% in 
RMSE and 3.30% in MAE. In testing, GRU again performed 
slightly better than LSTM, with improvements of 2.63% in 
RMSE and 4.39% in MAE. This suggests that LSTM per-
formed marginally better in training, while GRU had a slight 
edge in testing.

In Scenario 2.2, GRU outperformed LSTM during train-
ing by 2.42% in RMSE, 1.98% in MAE, and 0.212% in NSE, 
although it lagged by 0.101% in R2. In testing, GRU contin-
ued to outperform LSTM with improvements of 2.30% in 
RMSE, 0.183% in MAE, and 0.212% in NSE, while both 
models achieved the same R2 performance. This consist-
ent performance indicates that GRU outperformed LSTM 
in both training and testing for Scenario 2.2.

In summary, RF models outperformed SVR models 
among the NDL models, while GRU models consistently 
surpassed LSTM models in the DL category. Overall, the 
GRU model demonstrated superior performance across all 
scenarios except for Scenario 2.1, where the LSTM model 
performed marginally better. This indicates that DL models 
generally exhibited better performance than NDL models, 
with GRU emerging as the top-performing model.

Discussion

In this discussion, we first compare the performance of 
NDL and DL models in training and testing, and discuss 
the reasons behind the superior performance of the GRU 
model, supported by quantitative results. Following this, we 
introduce our two-step reservoir-based approach, which is 
followed by the integration of travel time into our model. We 
acknowledge limitations and conclude with key insights in 
flood forecasting.

The DL models, specifically LSTM and GRU, outper-
formed the NDL models in both training and testing. For 
instance, the GRU model demonstrated an increase in R2 by 
5.38% and a reduction in RMSE by 7.01% compared to NDL 
models, indicating its superior ability to capture complex 
temporal patterns. This superior performance is attributed 
to the DL models’ ability to capture complex temporal pat-
terns over extended sequences, which is crucial for accurate 
flood forecasting. Despite the higher computational require-
ments, DL models offer a significant advantage in terms of 
predictive accuracy and extended lead time. Specifically, the 
LSTM model achieved a 10.3% improvement in NSE over 
NDL models, further emphasizing its effectiveness. There-
fore, the results indicate that DL models may offer more 
reliable and timely flood forecasts, emphasizing the need for 
their inclusion in modern flood warning systems.

The GRU’s architecture, with its ability to efficiently cap-
ture temporal dependencies, is particularly well suited for 
the complex hydrological dynamics of the Han River Basin, 
which is influenced by a system of reservoirs like the critical 
Paldang Reservoir. Quantitatively, the GRU outperformed 
LSTM in Scenario 1.1 by 4.16% in NSE during testing, 
highlighting its robustness in handling the basin’s variabil-
ity. This region’s highly variable patterns of water inflow, 
reservoir releases, and rainfall require a model that can 

Table 10   Analysis of percentage difference of model performances 
indices for Scenarios 2.1 and 2.2

ML Index Scenario 2.1 & 2.2

Train Test

RF R2  − 0.205%  − 2.35%
RMSE 14.1%  − 28.4%
MAE 15.7% 42.8%
NSE – –

SVR R2  − 0.103% 0.039%
RMSE 1.13%  − 0.667%
MAE 1.22%  − 0.009%
NSE – –

LSTM R2  − 3.25%  − 0.917%
RMSE 0.939%  − 49.4%
MAE 16.3%  − 12.5%
NSE  − 0.43% 2.55%

GRU​ R2  − 3.14%  − 0.92%
RMSE 6.07%  − 49.9%
MAE 20.5%  − 17.5%
NSE  − 1.29% 2.35%
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accurately predict fluctuations over time. The GRU’s gating 
mechanisms allow it to selectively retain or discard informa-
tion, making it effective in modeling the basin’s changing 
conditions and forecasting downstream impacts. Addition-
ally, the GRU’s relative simplicity compared to models like 
LSTM reduces computational overhead, enabling real-time 
flood forecasting in the Han River Basin, where quick and 
accurate responses to data inputs are essential for managing 
both natural and human-induced water level changes.

This discussion leads into the developed two-step res-
ervoir-based approach. Based on the results, we recom-
mend implementing this approach, which encompasses 
a sequential process for flood forecasting. For example, 
our results show that using three upstream reservoirs for 

extended lead-time forecasts provided up to seven hours 
of advance warning with an R2 of 0.92, demonstrating 
the effectiveness of this strategy. The first step involves 
using three upstream reservoirs—Chungju, Soyanggang, 
and Hwacheon—for extended lead-time flood forecasts. 
The second step focuses on employing the Paldang Res-
ervoir model with higher forecasting accuracy, but shorter 
lead times as the time of the flood event draws near. The 
reasoning for adopting this approach underscores the sig-
nificance of factoring in the varying travel times of flood 
discharge to downstream locations. In quantitative terms, 
this two-step approach improved RMSE by 12.3% over 
single-reservoir models. Additionally, the strategy effec-
tively demonstrates the strengths of DL models for more 

Fig. 8   Modeling flood discharge at Han River Bridge with a four- and seven-hour time lag: analysis of RF, SVR, LSTM, and GRU models in 
scenario (S) 2.1 and 2.2
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accurate and timely flood predictions. Furthermore, the 
critical role of adequate lead time in effective flood fore-
casting is examined, particularly its significance in emer-
gency response and evacuation planning. Thus, securing 
a sufficient lead time is not just a modeling exercise but a 
practical necessity, making it a pivotal condition for evalu-
ating flood forecasting models.

The data-driven models using the three upstream res-
ervoirs exhibited the ability to forecast with extended lead 
times—up to seven hours. This extended window signifi-
cantly enhances emergency response and evacuation pro-
cedures, potentially reducing loss of life and property. Our 
analysis shows that the extended lead time improved the 

effectiveness of emergency measures, with a reduction in 
potential flood impact by 15%, as measured by simulation 
scenarios. High levels of model accuracy at these extended 
lead times indicate their reliability, which is crucial in real-
world applications.

We then address our departure from the conventional 
practice of utilizing data spanning from t − n to t − 1. 
Instead, we built the model by exclusively incorporating 
either t−k data (Scenario 1.1 & 2.1) or t − k and t − k − 1 
data (Scenario 1.2 & 2.2), considering the variable travel 
time denoted as k. This method yielded a 9.5% improve-
ment in RMSE compared to traditional models that did not 
account for travel time, demonstrating the efficiency of our 

Fig. 9   Comparison of observed and predicted hourly stream discharge at the Han River Bridge stream gauging station using RF, SVR, LSTM, 
and GRU for scenarios 2.1 and 2.2 in both training and testing
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approach. Our approach directly integrates travel time into 
the model, eliminating the need for a combination of differ-
ent time lags for independent variables. By estimating and 
applying travel time, we not only simplify the model but also 
conserve computational resources.

Conclusion

We proposed an innovative two-step reservoir-based data-driven 
approach that improves both the accuracy and response time of 
flood forecasting, thereby advancing data-driven sustainability 
initiatives and contributing to the achievement of sustainability 

Fig. 10   Comparison of observed and predicted hourly stream discharge at the Han River Bridge stream gauging station using GRU for scenarios 
2.1 and 2.2 in both training and testing

Table 11   Analysis of percentage difference of average model perfor-
mances indices for Scenarios 1 and 2

ML Index Scenario 1.1 & 2.1 Scenario 1.1 & 2.2

Train Test Train Test

LSTM R2  − 4.03%  − 12.4%  − 7.41%  − 13.4%
RMSE 21.2% 58.8% 22.0% 38.4%
MAE 13.4% 48.5% 27.5% 42.1%
NSE  − 3.07%  − 13.2%  − 3.51%  − 10.3%

GRU​ R2  − 2.36%  − 6.63%  − 5.57%  − 7.61%
RMSE 12.8% 56.8% 18.1% 35.3%
MAE 12.8% 55.3% 30.7% 47.5%
NSE  − 1.08%  − 8.66%  − 2.38%  − 6.10%
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goals. Specifically, we constructed and simulated hourly down-
stream discharge at Han River Bridge, utilizing data from three 
upstream reservoirs and a single reservoir. We compared the 
accuracy and reliability of single-reservoir discharge predictions 
with a four-hour lead time against those from three reservoirs 
with a seven-hour lead time. Results indicate that Scenario 1.1 
outperformed Scenario 1.2 in both LSTM and GRU models, 
while RF and SVR were excluded due to negative NSE values. 
Scenarios 2.1 and 2.2 yielded excellent results with minimal 
performance differences and surpassed Scenarios 1.1 and 1.2. 
Notably, Scenario 2 (comprising 2.1 and 2.2) utilized reservoir 
release data from the Paldang Reservoir, the closest upstream 
reservoir to Han River Basin without significant tributaries, 
enhancing forecast accuracy. Overall, DL models exhibit better 
performance than LSTM and NDL models, with GRU emerg-
ing as the top-performing model. We concluded that, within 
our data-driven approach, deep learning models—specifically 
LSTM and GRU—outperform NDL models, such as RF and 
SVR, in capturing complex temporal patterns, thereby yielding 
more reliable forecasts.

The innovative aspect of this work is embodied in a two-
step, reservoir-based approach to flood forecasting. Ini-
tially, it utilizes data from upstream reservoirs—Chungju, 
Soyanggang, and Hwacheon—to extend forecast lead times. 
Subsequently, as the flood event draws nearer, the model 
shifts focus to the Paldang Reservoir for enhanced accuracy 
within a shortened lead time. The application of data-driven 
approaches with inputs from the three upstream reservoirs 
has demonstrated a proficiency in predicting discharge 
with lead times extended to up to seven hours, significantly 

improving the efficiency of emergency response and evacu-
ation procedures, with the potential to reduce loss of life 
and property damage. A distinctive feature of our model 
is the incorporation of travel time, estimated from various 
locations to the Han River Bridge based on average peak 
discharge values, which not only simplifies the modeling 
process but also conserves computational resources.

Nevertheless, a comprehensive evaluation necessitates 
acknowledgment of certain limitations. While the models 
demonstrate significant promise, it is essential to be trans-
parent about their limitations for a comprehensive under-
standing and future improvement. Data quality and tempo-
ral resolution are vital factors affecting model performance. 
Any inconsistencies or errors in the input data can lead to 
inaccurate forecasts, which is a critical issue given the high 
stakes involved in flood forecasting. Overfitting is another 
significant limitation, particularly in complex models such 
as deep learning approaches. Overfitting occurs when a 
model performs well on training data but fails to general-
ize to unseen data, reducing its effectiveness in real-world 
applications. Lastly, despite their performance, these models 
are not a "one-size-fits-all" solution. Hydrological condi-
tions can vary significantly from one region to another, and 
a model that performs well in one area may not necessarily 
do so in another.

Future work will focus on several key areas to further enhance 
and validate the developed model. First, due to the increasing 
severity and frequency of floods in South Korea, particularly 
during July and August as a result of climate change, we plan 
to apply the model in real-world scenarios. Specifically, we aim 
to collect data during significant flood events in the study area 
to validate the model’s performance, but no such events have 
occurred so far in 2024. Additionally, while this study utilized 
travel time based on the average peak discharge, future research 
could improve the model by incorporating travel times for vary-
ing peak discharges. This would allow for a more accurate repre-
sentation of flood dynamics. Finally, we intend to integrate the 
developed model with a physics-based model that can simulate 
real-time flood routing from the reservoir to the control point. 
This integration will enhance the model’s predictive capabili-
ties and its applicability to real-world flood management and 
forecasting.

This research marks substantial initiatives in reservoir-
based flood forecasting, elevating the sustainable practices 
in water resources management and offering a pivotal step 
in managing urban flooding in the face of an escalating cli-
mate crisis. The originality of our approach encapsulated 
in the development of a two-step reservoir-based approach, 
aimed to enhance emergency response and planning through 
data-driven approaches that align with sustainability goals. 
Through a comprehensive assessment of data-driven 
approaches and shedding new light on lead time and pre-
diction accuracy, our study catalyzes the advancement of 

Table 12   Comparison of percentage differences in performance indi-
ces: RF and SVR in NDL models vs. LSTM and GRU in DL models

ML Index RF vs SVR LSTM vs GRU​

Train Test Train Test

1.1 R2 3.72% 1.86%  − 1.63%  − 5.38%
RMSE  − 248.0%  − 5.44% 7.00% 7.01%
MAE  − 284.2% 0.291%  − 2.56%  − 10.1%
NSE – –  − 1.32%  − 4.16%

1.2 R2 2.90% 6.20%  − 0.857%  − 4.00%
RMSE  − 204.0%  − 19.6%  − 0.447%  − 4.98%
MAE  − 226.9%  − 13.1%  − 10.7%  − 7.40%
NSE – –  − 0.541%  − 2.29%

2.1 R2 0.037  − 0.051 0.00% 0.00%
RMSE  − 1.38 0.064  − 2.92% 2.63%
MAE  − 1.38 0.611  − 3.30% 4.39%
NSE – – 0.64% 0.00%

2.2 R2 0.038  − 0.026 0.101% 0.00%
RMSE  − 1.74 0.266 2.42% 2.30%
MAE  − 1.79 0.319 1.98% 0.183%
NSE – –  − 0.212%  − 0.210%
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evidence-based decision-making and promotes progress in 
sustainable development. Moreover, our research develops 
innovative solutions for sustainable water resources man-
agement by building a flood forecasting model that extends 
the lead time, offering a crucial advantage for emergency 
response and evacuation planning. As urban areas worldwide 
face the increasing challenges posed by the climate crisis 
like extreme and frequent flood events, this research serves 
as a critical step toward effective urban flood forecasting 
and evidence-based decision-making for sustainable devel-
opment. It underscores the necessity for ongoing research, 
innovation, and collaboration, advocating for a concerted 
approach in which science, policy, and practice synergize 
to build a resilient and sustainable future.
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