
Citation: Choi, S.‑M.; Cha, H.‑S.;

Jiang, S. Hybrid Data Augmentation

for Enhanced Crack Detection in

Building Construction. Buildings

2024, 14, 1929. https://doi.org/

10.3390/buildings14071929

Academic Editors: Yasser Mohamed

and Pramen P. Shrestha

Received: 11 May 2024

Revised: 13 June 2024

Accepted: 21 June 2024

Published: 25 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Hybrid Data Augmentation for Enhanced Crack Detection in
Building Construction
Seung‑Mo Choi 1 , Hee‑Sung Cha 1,* and Shaohua Jiang 2

1 Department of Smart Convergence Architecture, College of Engineering, Ajou University,
Suwon 16499, Republic of Korea; mo126713@ajou.ac.kr

2 Department of Construction Management, Dalian University of Technology, Dalian 116024, China;
shjiang@dlut.edu.cn

* Correspondence: hscha@ajou.ac.kr

Abstract: Quality management in construction projects necessitates early defect detection, tradition‑
ally conducted manually by supervisors, resulting in inefficiencies and human errors. Addressing
this challenge, research has delved into automating defect detection using computer vision technol‑
ogy, yet progress has been impeded by data limitations. Numerous studies have explored generating
virtual images to tackle this issue. However, these endeavors have fallen short in providing image
data adaptable to detecting defects amidst evolving on‑site construction conditions. This study aims
to surmount this obstacle by constructing a hybrid dataset that amalgamates virtual image data with
real‑world data, thereby enhancing the accuracy of deep learning models. Virtual images and mask
images for the model are concurrently generated through a 3D virtual environment and automatic
rendering algorithm. Virtual image data are built by employing a developed annotation system to
automatically annotate through mask images. This method improved efficiency by automating the
process from virtual image creation to annotation. Furthermore, this research has employed a hi‑
erarchical classification system in generating virtual image datasets to reflect the different types of
defects that can occur. Experimental findings demonstrate that the hybrid datasets enhanced the F1‑
Score by 4.4%, from 0.4154 to 0.4329, compared to virtual images alone, and by 10%, from 0.4499 to
0.4990, compared to sole reliance on real image augmentation, underscoring its superiority. This in‑
vestigation contributes to unmanned, automated quality inspection aligningwith smart construction
management, potentially bolstering productivity in the construction industry.

Keywords: virtual image; data augmentation; defect detection; 3D virtual model

1. Introduction
1.1. Backgrounds

With the onset of the Fourth Industrial Revolution, there has been a notable boost in
productivity across the manufacturing sector [1]. The Fourth Industrial Revolution has
markedly enhanced productivity across the manufacturing industry through the imple‑
mentation of robotics and automation. Nevertheless, the construction industry has been
relatively slow to adopt these technologies, resulting in lower productivity gains than other
manufacturing industries. The construction industry significantly lags behind in terms of
productivity growth compared to other manufacturing sectors [2,3]. Over the last twenty
years, the annual growth rate of labor productivity in construction has only reached 1%
globally, a stark contrast to the average of 3.6% in manufacturing [4]. Consequently, it
becomes imperative to adopt measures aimed at enhancing productivity through the in‑
tegration of robotics and automation [5]. Yet, the construction industry remains consid‑
erably less digitized compared to other sectors, positioning it as one of the least digital‑
ized industries [6,7]. Moreover, the construction sector grapples with challenges related
to declining productivity stemming from a dwindling labor and technical workforce, com‑
pounded by the aging of the labor force. For instance, in South Korea, the proportion

Buildings 2024, 14, 1929. https://doi.org/10.3390/buildings14071929 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14071929
https://doi.org/10.3390/buildings14071929
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0009-0000-6973-3710
https://orcid.org/0000-0001-5723-4447
https://orcid.org/0000-0001-9646-5205
https://doi.org/10.3390/buildings14071929
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14071929?type=check_update&version=2

Buildings 2024, 14, 1929 2 of 31

of construction workers under 30 years of age plummeted from 70.5% in 2012 to 20% in
2022 [8]. The reduction in the younger labor force will result in a shortage of workers to
compensate for the impending loss of skilled workers due to the retirement of older, more
experienced workers.

The shortage of skilled labor is one of the most significant concerns for the construc‑
tion industry [9]. The decline in the number of skilled laborers is not only a matter of
occupational safety but also affects the quality of construction projects. In fact, human‑
related factors such as a shortage of skilled workers and supervisors contribute to defects
in construction [10]. Quality control efforts demand significant time and resources, with
supervisors spending an average of 4 h on site and an additional 3 h writing reports for ev‑
ery hour spent on site [11]. Conventional quality inspections are both labor‑intensive and
ineffective [12–14]. For instance, in the Nanjing subway construction project, more than
40 inspectors spend roughly 3 h daily in subway tunnels searching for defects [15]. Con‑
sequently, there is a growing imperative to enhance productivity by minimizing time and
effort, prompting recent research to focus on automating quality management processes
to streamline these demands [16].

Research related to quality management automation has progressed in various direc‑
tions. Kim [17] suggested an approach using Lead Zirconate Titanate (PZT)‑based elec‑
tromechanical impedance (EMI) technology for the automatic detection of concrete cracks,
identifying the optimal frequency range that strongly reflects structural conditions, thus
contributing to the accuracy of crack detection using EMI technology. Liu [18] used point
cloud technology to estimate the location of wall cracks through the 3D reconstruction of
2D images, projecting the 2D image cracks onto the 3D concrete surface with cracks to
extract accurate 3D coordinates of the crack edges. Image‑based analysis technology is
receiving much attention in surface quality management research [19].

Image‑based analysis technology is considered a key tool for enhancing the construc‑
tion industry [20,21]. This technology, applicable across various domains such as progress
monitoring, safety management, quality inspection, and resource management, holds sig‑
nificant potential [22]. Object detection technology, a type of deep learning technology,
automatically identifies and recognizes target objects from images captured by cameras.
Convolutional Neural Network (CNN) is the most widely used deep learning method in
this realm [23]. Wangdeveloped a framework integrating a 3D scene reconstructionmecha‑
nism and a transfer learning model to automatically pinpoint defects on building surfaces
within reconstructed 3D scenes [24]. Similarly, Perez utilized CNN techniques to detect
building defects [25]. Automating the detection and location identification process offers
the benefit of reducing the need for manual labor and mitigating errors stemming from
subjective human judgment in defect assessment through objective evaluation [26–29]. De‑
spite these advantages, the technology is constrained by its reliance on data inherent in
deep learning.

Image‑based analysis utilizing deep learning or computer vision enables computers
to comprehend digital images or videos andmake judgments similar to human vision [30].
Computer vision uses supervised learning in training models, requiring a substantial
amount of labeled image or video data. This implies that a vast amount of data is essential
to enhancemodel accuracy. However, data acquisition poses a common challenge inmany
studies [16,31,32]. Collecting data for training is time‑consuming and labor‑intensive.
Moreover, obtaining real‑world data from the industry sector is often difficult [33]. To
tackle this issue, various augmentation methods have been developed to expand limited
data. For image data, typical methods include using Python libraries, with several avail‑
able libraries [34]. A commonly used library, such as imaging, can modify existing data
through rotations, resizing, and noise addition. Nonetheless, the diversity of data obtained
through these methods is relatively limited [35]. To overcome this limitation, Generative
Adversarial Network (GAN) has been developed to extract features from existing images
and generate entirely new ones [36]. However, training GAN models can be intricate and
is typically regarded as advanced technology, particularly in industrial settings [37].

Buildings 2024, 14, 1929 3 of 31

This study aims to enhance the conventional method ofmanually transcribing images
of actual defects into a trainable format. To this end, we propose a methodology for gen‑
erating virtual defect images based on 3D modeling. This approach seeks to reduce the
time required for data acquisition, improve efficiency through the automation of image
generation and labeling, and contribute to the expansion of data diversity. The research
follows these steps: (1) reviewing prior research on the generation of virtual image data
and the automation of defect detection, (2) developing methodologies for model genera‑
tion and automation of image data creation, and (3) conducting an empirical study on the
generated image data.

1.2. Scope and Flow of the Study
1.2.1. Scope of the Study

Quality management is integral to all types of construction projects, yet, as shown in
Table 1, over half of the defects identified during post‑construction quality inspections are
attributed to the finishing process [38]. It is difficult for the actual users or occupants of a
building to directly observe the structural defects of the building or the defects of elements
such as pipes inside the building. Conversely, the interior finishes themselves are a source
of direct discomfort. Such defects are immediately visible to the users and directly affect
their quality of life. It is, therefore, of paramount importance to manage defects in finish‑
ing works. Furthermore, the majority of finishing work is conducted indoors. This implies
that there are numerous alterations to construction in indoor environments, accompanied
by a correspondingly dynamic evolution of spatial information. In essence, the inspection
of finishing work necessitates a more comprehensive examination than that of framing
and structural work. Moreover, the periodic visits of a manager to a given space to con‑
duct inspections are an inefficient use of resources. Therefore, we have chosen to concen‑
trate on the finishing process, given its combination of low efficiency and high occurrence
of defects.

Table 1. Ratio and cost of defect by building work [38].

Sub‑Work Number of
Defects Ratio (%) Unit Cost

(Unit: KRW)
Defect Repair Cost

(Unit: KRW)

Finishing

Paper Hanging 6839 14.91 8096 55,368,544
Tile 4536 9.89 18,091 82,060,776
Floor 4332 9.45 15,002 64,988,664

Interior Finishing 2607 5.68 121,832 33,453,024
Painting 2469 5.38 5361 13,236,309
Cleaning 1999 4.36 3343 6,682,657
Masonry 1004 2.19 23,605 23,699,420

The finishing process encompasses various types of tasks, including drywall installa‑
tion, brick walls, ceiling work, stair railings, hardware installation, plastering and water‑
proofing, tile installation, painting, glass/insulationwork, window installation, sheetwork,
and cabinetry, among others. Among these, pre‑occupancy inspections have revealed that
wallpaper and tile work are the processes most prone to defects (as shown in Table 1).
Additionally, tile work stands out as the most expensive to rectify. This underscores the
importance of meticulous management of tile work to reduce project expenses. However,
there has been limited research conducted on automatically detecting tile defects that occur
during construction.

Manual inspection is susceptible to errors and inconsistencies due to subjective judg‑
ment, making it time‑consuming and inefficient [39]. To address these challenges, numer‑
ous studies have explored defect detection in tiles [40–52]. For instance,Wan [50] enhanced
the Feature Pyramid Network (FPN) of the You Only Look Once (YOLOv5) deep learning
model and applied the Convolutional Block AttentionModule (CBAM)module, achieving
significant improvements in F1 score andmAP (mean average precision). Zhu [51] utilized

Buildings 2024, 14, 1929 4 of 31

semantic segmentation to accurately delineate objects with polygonal borders, achieving a
highmIoU (Mean Intersection over Union) value. Dong [52] proposed amethod for detect‑
ing surface defects in mosaic tiles using industrial cameras, achieving a high detection rate
and reducing detection time substantially. However, while these studies primarily focus
on post‑manufactured surface defect detection in tile factories, they are not directly appli‑
cable to post‑installed inspections in on‑site construction. To automatically detect defects
in tiles after installation, it is crucial to identify defects in images of walls and/or floors
made of tiles; yet, research in this specific area is limited. While Stephen [49] conducted a
study to detect cracks in tiled walls, it was confined to walls made of a single type of tile
and primarily emphasized a machine learning algorithm.

1.2.2. Research Flowchart
Advanced augmentation techniques involve synthetic image generation, creating en‑

tirely new data and thereby surpassing the limits of traditional transformations. This in‑
cludes using GANs or developing models in virtual environments and rendering them to
create images. Having delineated the scope of the study, which focused on tile defects, the
direction for research is established to ensure that a well‑defined and organized study is
conducted. This study is initiated from a literature‑based investigation, followed by prob‑
lem identification, research design, research execution and analysis, and conclusions and
suggestions, as shown in Figure 1. The flowchart is a generic sequence, and our study
reflects its specific characteristics in a more detailed and elaborate plan.

Buildings 2024, 14, 1929 4 of 32

numerous studies have explored defect detection in tiles [40–52]. For instance, Wan [50]
enhanced the Feature Pyramid Network (FPN) of the You Only Look Once (YOLOv5)
deep learning model and applied the Convolutional Block Attention Module (CBAM)
module, achieving significant improvements in F1 score and mAP (mean average preci-
sion). Zhu [51] utilized semantic segmentation to accurately delineate objects with polyg-
onal borders, achieving a high mIoU (Mean Intersection over Union) value. Dong [52]
proposed a method for detecting surface defects in mosaic tiles using industrial cameras,
achieving a high detection rate and reducing detection time substantially. However, while
these studies primarily focus on post-manufactured surface defect detection in tile facto-
ries, they are not directly applicable to post-installed inspections in on-site construction.
To automatically detect defects in tiles after installation, it is crucial to identify defects in
images of walls and/or floors made of tiles; yet, research in this specific area is limited.
While Stephen [49] conducted a study to detect cracks in tiled walls, it was confined to
walls made of a single type of tile and primarily emphasized a machine learning algo-
rithm.

1.2.2. Research Flowchart
Advanced augmentation techniques involve synthetic image generation, creating en-

tirely new data and thereby surpassing the limits of traditional transformations. This in-
cludes using GANs or developing models in virtual environments and rendering them to
create images. Having delineated the scope of the study, which focused on tile defects, the
direction for research is established to ensure that a well-defined and organized study is
conducted. This study is initiated from a literature-based investigation, followed by prob-
lem identification, research design, research execution and analysis, and conclusions and
suggestions, as shown in Figure 1. The flowchart is a generic sequence, and our study
reflects its specific characteristics in a more detailed and elaborate plan.

Figure 1. Flowchart of research.

During the preliminary research survey and problem identification phase, we delved
into studies focusing on automated defect detection and virtual image data generation to
bolster the accuracy of deep learning models. Through this exploration, we pinpointed
specific challenges and issues as knowledge gaps. Subsequently, in the research design
phase, we formulated the framework for our study. This framework included tasks data
collection, virtual data generation, development of an automated annotation system,
training deep-learning model, and analysis of the result of training. In the research execu-
tion phase, we put the designed framework into action, which involved image collection,
setting up the virtual environment, and generating the dataset with the developed system.
This dataset served as the basis for training deep learning models and assessing their
learning accuracy. Following the model training and validation, we meticulously ana-
lyzed the data and interpreted the results to draw meaningful conclusions.

Figure 1. Flowchart of research.

During the preliminary research survey and problem identification phase, we delved
into studies focusing on automated defect detection and virtual image data generation to
bolster the accuracy of deep learning models. Through this exploration, we pinpointed
specific challenges and issues as knowledge gaps. Subsequently, in the research design
phase, we formulated the framework for our study. This framework included tasks data
collection, virtual data generation, development of an automated annotation system, train‑
ing deep‑learning model, and analysis of the result of training. In the research execution
phase, we put the designed framework into action, which involved image collection, set‑
ting up the virtual environment, and generating the dataset with the developed system.
This dataset served as the basis for training deep learningmodels and assessing their learn‑
ing accuracy. Following the model training and validation, we meticulously analyzed the
data and interpreted the results to draw meaningful conclusions.

2. Literature Review
This study evaluates the efficacy of data augmentation through virtual data in train‑

ing deep learning models for defect detection. This literature review focuses on recent
advancements in construction defect detection and the application of synthetic data for
model training. In particular, it examines how these approaches address the limitations of
traditional data collectionmethods and enhance the accuracy and efficiency of defect detec‑
tion systems. It includes a comprehensive analysis of various methods employed in defect
detection and explores the potential of synthetic data to overcome common challenges in
the field.

Buildings 2024, 14, 1929 5 of 31

2.1. Research on Defect Detection
Conventionalmethods of construction defect detection are time‑consuming and labor‑

intensive, necessitating automation in the construction industry due to a dwindling work‑
force [53]. Consequently, significant research efforts have been made to automate this
process. Lu Y [54] employed the Canny‑edge algorithm on images to detect damages,
losses, or cracks in exterior masonry finishes. Although effective in localizing suspect ar‑
eas, this method has limitations in classifying objects accurately as cracks, grout lines, or
other defects. This highlights the necessity formore sophisticated classification techniques.
Luo [55] and Ichi [56] both utilized thermal cameras to detect structural defects such as
separations and delamination, marking a crucial advancement in non‑destructive defect
detection. Luo proposed a hybrid of spatial‑temporal deep learning architectures, while
Ichi concentrated on measuring thresholds between defect and non‑defect areas, empha‑
sizing the precision of thermal imaging in monitoring structural health. However, since
cameras are more affordable and easier to deploy than sensors, numerous recent research
projects based on computer vision technology have been conducted [57].

The transition to computer vision‑based technologies has prompted numerous stud‑
ies that employ computer vision techniques. Lee [58] applied the Faster Regions with Con‑
volutional Neural Networks (RCNNs) feature to detect external defects in multi‑family
housing, such as peeling, cracks, and leaks. The resulting accuracy was 62.7%, which rep‑
resents a significant improvement over traditional methods. Xu [15] and Dais [59] further
enhanced model performance using deep learning. Xu improved mAP scores in tunnel
defect detection by employing the Mask‑RNNC model, while Dais achieved the highest
F1‑score of 79.6% using the pre‑trainedU‑net‑Mobilenetmodel onmasonry surfaces defect
detection. In conclusion, these studies collectively advance the field of construction defect
detection by integrating innovative computer vision and deep learning techniques, paving
the way for the further exploration of automated, intelligent systems in the construction
industry. Nevertheless, the efficacy of these deep learning models is contingent upon the
quality and quantity of the data, with a pronounced decline in performance observed in
the case of data‑scarce defects [16,60–63].

2.2. Research on Training with Synthetic Image Data
2.2.1. Synthetic Image Generated by GAN

Due to challenges in data collection or insufficient data diversity, obtaining adequate
data for training deep learning models is often difficult. To address this, an augmenta‑
tion technique was developed to enhance datasets and improve model accuracy by intro‑
ducing variability [64]. Traditional augmentation methods involve applying geometric or
photometric transformations to original images to generate new image data. A prime ex‑
ample is the use of the ImgAug library [65], which applies various changes such as rotation,
shearing, cropping, and noise addition to the original images, creating new data. While
beneficial for data diversity and accuracy, these methods may lead to potential overfitting
issues [66]. Advanced augmentation techniques involve synthetic image generation, cre‑
ating entirely new data and thereby surpassing the limits of traditional transformations.
This includes using GANs or developing models in virtual environments and rendering
them to create images.

GAN technology, recognized as a potent deep learning model for generating new
data, is being actively considered across industries that demand large volumes of
data [67–69]. Substantial research has been conducted on synthetic data within this frame‑
work. For instance, in the medical sector, Qin [70] utilized various GAN models to pro‑
duce synthetic skin lesion images, examining the discrepancies across images from dif‑
ferent models. Similarly, Sandfort [71] employed CycleGAN technology on contrast CT
images to create non‑contrast counterparts, while Lei [72] adapted the CycleGAN model
to transform brain MR images into CT images, facilitating data generation. The agricul‑
tural sector also reflects a growing trend of leveraging GAN‑based technology for image
data augmentation [73]. Concurrently, the urban and construction fields have witnessed

Buildings 2024, 14, 1929 6 of 31

analogous explorations. Dewi [74] incorporatedDCGANwith various backbone networks
to augment traffic sign image data, demonstrating that integrating synthetic images with
original ones could enhance accuracy up to 92%.

Li [75] synthesized high‑resolution images of cracked concrete by merging concrete
images with hand‑painted damage maps using GAN‑based networks, showcasing signif‑
icant authenticity. The study demonstrated that GAN technology has the potential to
enhance computer vision‑based automation techniques for the detection of construction
defects, and it proved that the learning of synthetic images is also valid in the field of con‑
struction. Furthermore, Bang [76] detailed a method where target objects from actual site
images are cut out, geometrically transformed, and then reintegrated using GAN technol‑
ogy to fill the resultant gaps. Despite GANs’ benefits, their limitations are pronounced.
GANs necessitate training data for new image generation, with insufficient data poten‑
tially leading to mode collapse and diminished data diversity [77].

The paradox lies in the need for ample data to create synthetic data for augmenting
scarce object data. Moreover, the GAN image generation method is inapplicable to this
study due to its inherent feature‑based image creation process. GANs introduce minor
diversity to data, generating subtly varied images, and, hence, limiting their use in de‑
picting the dynamic nature of construction sites where continuous change is the norm.
The generated images predominantly reflect the processes shown in the training images.
Additionally, the auto‑labeling of GAN‑produced images is challenging, while rendering
manual labeling is inefficient and time‑consuming. Given these constraints, even though
the GAN technology is effective in generating synthetic images, virtual environments are
preferred for generating synthetic image data in restricted scenarios like construction sites.
Moreover, here, to distinguish between images created based on virtual environments and
based on GANs, the term virtual image to refer to images based on virtual environments
is used.

2.2.2. Virtual Image Generated by Virtual Environments
Methods for generating synthetic images in virtual environments can be categorized

into two types: one that places real background images in a virtual environment and su‑
perimposes virtually generated target objects onto these backgrounds, and another that
generates both the background and the objects completely virtually. Starting with real im‑
age backgrounds, Soltani et al. [78] introduced a method that synthesizes 3D models of
target objects onto construction site images, automatically generating images and anno‑
tations, thereby improving annotation accuracy, reducing time, and increasing true de‑
tection rates. Hwang et al. [79] built a database of 99,800 images in just 42 min using
foreground–background cross‑oversampling on 3D object‑applied real‑site background
images and web‑crawling, achieving an F‑1 score of 96.99%.

Kim et al. [80] and Lee et al. [81] placed 3D models of people and construction ma‑
terials or safety hooks, respectively, in virtual environment backgrounds and used the
generated images as data to achieve significant results. Similarly, Barrera‑Animas and
Delgado [82] created fully 3D construction sites and objects within a virtual environment,
and Assadzadeh et al. [83] trained on 3D modeled excavator images to learn poses based
on joint locations, validating the effectiveness of images generated in a virtual environment
against real image datasets. Numerous studies have also been conducted on building scene
understanding, using methods that automatically generate segmentation annotations for
object detection targets in 3D‑modeled building shapes in virtual environments [84–88].
In addition, Neuhausen et al. [89] created a virtual environment similar to real‑world con‑
struction sites to train CV deep learning models for tracking worker performance in the
field. Research has also been conducted on defect detection, creating magnified images of
dented pipes to automatically label data for models used to detect defects in pipes in gen‑
eral industrial settings [90]. The studies reviewed collectively offer unique insights into
the advancement of synthetic data augmentation techniques and their potential for use in
the construction of defect detection systems.

Buildings 2024, 14, 1929 7 of 31

However, most studies, including those focusing on defects, have been on relatively
large objects and are sparse, indicating a lack of active research into generating virtual
environment‑based data for defect detection, especially for smaller defects such as tile
cracks. Also, studies about generating defects cast doubt on the diversity of defects gener‑
ated, and the simple use of common 3D assets for modeling may not satisfy specific defect
requirements, highlighting the need for methods to generate desired defects. In essence,
there is a lack of research into the generation of data in virtual environments for the detec‑
tion of construction‑related defects that occur in constantly changing conditions, indicating
a lack of methodologies that can be applied to the detection of user‑specified defects.

3. Knowledge Gap and Research Objective
Despite extensive research into synthetic image generation, there is a notable scarcity

of studies focusing specifically on creating synthetic images tailored for detecting defects
that occur during the construction process. In contrast to previous studies, tile defects are
notably small, lack a fixed shape, and can manifest in a multitude of shapes. However,
there is a paucity of research on the generation of virtual images for them. While GANs
represent a potent tool for image synthesis, their application in dynamic environments like
construction sites, characterized by high complexity anddiversity of defects, is limited. For
example, Siu et al.’s [91] work on detecting cracks in underground pipes using enhancing
synthetic data generated in a virtual environment with style transitions shows potential
in this area; however, the study focused primarily on the static environment of the pipes,
which may not be fully representative of the dynamic changes observed on construction
sites. Similarly, Qiu et al. [92] demonstrate the benefits of using synthetic data enhanced
with YOLOv8‑FAMand style transitions for automatic rail fastener defect detection in a rel‑
atively static situation. Nevertheless, this study also underscores the limitations of GANs
and style transitions in environmentswith greater dynamic variation and complexity, such
as construction sites. In contrast, for defect detection in dynamic environments, virtual
environments alone have the potential to generate valuable data without further process‑
ing. However, research solely utilizing virtual environments for defect detection remains
underexplored, primarily due to the scarcity of studies. Most existing research tends to
focus on understanding indoor scenes or detecting large objects like machinery, people,
and materials.

This study proposes a newmethod to generate virtual defect image data for dynamic
environments like construction sites, specifically focusing on tile work. Using a hierar‑
chical classification scheme, various defect types are generated in a virtual environment,
aiming to bridge the reality gap through rendering. Additionally, automatic segmentation
labeling and annotation are employed to streamline preprocessing. The methodology is
applied to compare virtual and real image data performance, with potential applications
beyond tile work in construction quality management systems.

4. Methodology
4.1. Research Framework

The research framework is structured into five main stages: (1) real image collection,
(2) defect type analysis, (3) virtual 3D model and data generation, (4) real image labeling
and construction, and (5) the performance comparison of various datasets. This framework
systematically lists the tasks performed at each stage, outlining the direction of the research
(Figure 2).

In the first stage, real images were collected through Google crawling, web searches,
and field photography. Following this, defect type analysis (stage 2) ensured data diver‑
sity and the accuracy required for model training, leading to the virtual model creation
(stage 3). During this stage, virtual images were generated by applying defects to real
building 3D models (stage 4). These generated data were then used for model training,
completed with real image labeling. Lastly, the performance of various datasets created
was compared to derive the most effective data combination (stage 5). Unlike previous

Buildings 2024, 14, 1929 8 of 31

studies, this approach enables automatic annotation through Mask image rendering and
analyzes the contribution of segmentation‑applied virtual data in defect detection. De‑
tailed methodologies and contents for each stage are explored in the following sections.

Buildings 2024, 14, x FOR PEER REVIEW 8 of 32

4. Methodology
4.1. Research Framework

The research framework is structured into five main stages: (1) real image collection,
(2) defect type analysis, (3) virtual 3D model and data generation, (4) real image labeling
and construction, and (5) the performance comparison of various datasets. This frame-
work systematically lists the tasks performed at each stage, outlining the direction of the
research (Figure 2).

Figure 2. Research framework.

In the first stage, real images were collected through Google crawling, web searches,
and field photography. Following this, defect type analysis (stage 2) ensured data diver-
sity and the accuracy required for model training, leading to the virtual model creation
(stage 3). During this stage, virtual images were generated by applying defects to real
building 3D models (stage 4). These generated data were then used for model training,
completed with real image labeling. Lastly, the performance of various datasets created
was compared to derive the most effective data combination (stage 5). Unlike previous
studies, this approach enables automatic annotation through Mask image rendering and
analyzes the contribution of segmentation-applied virtual data in defect detection. De-
tailed methodologies and contents for each stage are explored in the following sections.

4.2. Real Image Collection
This research seeks to evaluate how replacing real images with virtual ones affects

the accuracy of deep learning models trained for defect detection. It involves comparing
model performance using both real and virtual images and examining how accuracy
changes with different ratios of real and virtual images. Therefore, real image collection
was necessary to provide a baseline for comparison and to understand the impact of in-
corporating real data into the training process.

Figure 2. Research framework.

4.2. Real Image Collection
This research seeks to evaluate how replacing real images with virtual ones affects

the accuracy of deep learning models trained for defect detection. It involves compar‑
ing model performance using both real and virtual images and examining how accuracy
changes with different ratios of real and virtual images. Therefore, real image collection
was necessary to provide a baseline for comparison and to understand the impact of incor‑
porating real data into the training process.

In this research, image crawling techniques were employed to obtain real images. Im‑
age crawling involves extracting all images uploaded on a web page, with Google Images
being the target source in this study. Relevant search words, such as “Tile construction
(in Korean)”, “Tile crack (in Korean)”, and “Tile defect (in Korean)”, were used to retrieve
images suitable for the research. Following extraction, irrelevant or inappropriate images
were filtered out. The image crawling process was conducted using Python in VScode,
employing the following algorithm (Algorithm 1). The algorithm starts with initiating a
ChromeWebDriver and then directs the browser toGoogle Images and inputs search terms
specific to our study needs (e.g., ‘Tile cracked’). It then navigates through the search results,
downloading each image to our local server. A flowchart accompanying Algorithm 1 vi‑
sually represents these steps, helping to clarify the sequence and integration of tasks. This
approach not only streamlines the acquisition of high‑quality images but also aligns with
our objective to create a comprehensive dataset for defect detection.

Buildings 2024, 14, 1929 9 of 31

Algorithm 1Web Image Crawling

1: Install and initiate a Chrome WebDriver
2: Set the URL to the Google Images search page
3: Navigate the driver to the specified URL
4: Wait implicitly for elements to load
5: Find the search input element by its CSS selector
6: Enter ‘Tile cracked’ into the search input
7: Send a RETURN key to initiate the search
8: Wait for the search results to load
9: Scroll the webpage down 60 times to load more images
10: Attempt to click the ‘Show More Results’ button if present
11: Scroll again 60 times after clicking the button if applicable
12: Collect links to all loaded images
13: Filter out and store non‑empty source URLs in a list
14: Print the number of found images
15: Download each image by its URL and save it to the local drive under the C drive
16: Print a message upon completion of downloads

Using this image crawling technique, a total of 340 real tile defect images were col‑
lected. The collection comprises 230 images with tile defects and 110 images of tiles with‑
out defects. Randomly selected sets of 50 images each were used for validation and testing
in the learning process.

4.3. Defect Type Analysis Phase
Defects in construction exhibit diverse characteristics, including variations in location,

size, and simultaneous occurrences. For an automatic defect detection model to be effec‑
tive, it must accurately identify these diverse types. However, simply having a large quan‑
tity of image data may not suffice, as a lack of diversity can hinder the model’s accuracy.
Hence, ensuring data diversity is crucial for enhancing the model’s performance in defect
detection. To achieve this, we conducted a detailed analysis of defect types using images ac‑
quired during the real image collection phase. Hierarchical classification techniques were
employed to categorize the defects effectively.

Hierarchical classification arranges data into multiple levels of hierarchy, aiding in
organizing information and gaining insights from the data. It typically begins with broad
categories and progressively becomes more specific. When used for defect type classifi‑
cation, it can include categories such as work type, defect type, form of defect, location,
and number of defects, as depicted in Figure 3. When applied to tile work, the focus of
this research, the outcomes are presented in Table 2. By utilizing this classification sys‑
tem, a variety of defect types can be generated in virtual 3D models, thereby ensuring
data diversity.

Buildings 2024, 14, 1929 10 of 32

classification, it can include categories such as work type, defect type, form of defect, lo-
cation, and number of defects, as depicted in Figure 3. When applied to tile work, the
focus of this research, the outcomes are presented in Table 2. By utilizing this classification
system, a variety of defect types can be generated in virtual 3D models, thereby ensuring
data diversity.

Figure 3. Hierarchical class classification flow.

Table 2. Example of tile hierarchical class classification.

Work Type Defect Type Detail Defect Type Location Number of Defects

Tile
Crack Typical Crack Center/Side/Corner/Whole Single/Multiple

Micro Crack Center/Side/Corner/Whole Single/Multiple

Fail Typical Fail Center/Side/Corner/Whole Single/Multiple
Partial Fail Center/Side/Corner/Whole Single/Multiple

4.4. Creation of a Virtual Environment
4.4.1. Creation of Virtual 3D Models

Rather than using GAN models, virtual images have been generated using 3D mod-
eling tools and rendering. Initially, blueprints matching the standards, materials, and
scale of the real building were chosen. Public data blueprints from Seoul Housing and
Urban Corporation (SHUC) were used for this purpose. In modeling, the focus was on the
building’s interior walls, especially areas using tiles. Blender was utilized as the modeling
software, with Blenderkit and Textures serving as the sources for textures and 3D assets.

Blender, an open-source 3D computer graphics software, is used in various fields
such as architecture, product design, and game modeling. It offers a wide range of tools
for basic modeling, texturing, shading, and rendering. Moreover, it features scripting ca-
pabilities necessary for creating an automatic rendering system, allowing for additional
work through Python-based commands. The realism of rendered images is vital for their
value as image data, and Blender’s Cycles physics-based render engine excels in produc-
ing high-quality renderings. Hence, Blender was chosen as the modeling tool for this re-
search owing to its versatility and rendering capabilities.

Within Blender, models were crafted using the Modeling feature, while textures re-
sembling the finishes used in each location were sourced from Blenderkit and Texture.
The blueprints indicated various finishes, including wood-patterned flooring, wooden
skirting, plain white wallpaper, and ceramic art wall tiles. Models were constructed to
incorporate these elements. To accommodate changes in lighting conditions resulting
from the sun’s position, four models were generated and positioned to face east, west,
north, and south around a central sun lamp. Additionally, the brightness of the interior
lighting was adjusted lower in one of the models to consider variations in brightness and
light reflection during rendering. This methodology resulted in the creation of 3D models,
as illustrated in Figure 4.

Figure 3. Hierarchical class classification flow.

Table 2. Example of tile hierarchical class classification.

Work Type Defect Type Detail Defect Type Location Number of Defects

Tile
Crack

Typical Crack Center/Side/Corner/Whole Single/Multiple
Micro Crack Center/Side/Corner/Whole Single/Multiple

Fail
Typical Fail Center/Side/Corner/Whole Single/Multiple
Partial Fail Center/Side/Corner/Whole Single/Multiple

Buildings 2024, 14, 1929 10 of 31

4.4. Creation of a Virtual Environment
4.4.1. Creation of Virtual 3D Models

Rather than using GANmodels, virtual images have been generated using 3Dmodel‑
ing tools and rendering. Initially, blueprints matching the standards, materials, and scale
of the real building were chosen. Public data blueprints from Seoul Housing and Urban
Corporation (SHUC) were used for this purpose. In modeling, the focus was on the build‑
ing’s interior walls, especially areas using tiles. Blender was utilized as the modeling soft‑
ware, with Blenderkit and Textures serving as the sources for textures and 3D assets.

Blender, an open‑source 3D computer graphics software, is used in various fields such
as architecture, product design, and game modeling. It offers a wide range of tools for
basic modeling, texturing, shading, and rendering. Moreover, it features scripting capabil‑
ities necessary for creating an automatic rendering system, allowing for additional work
through Python‑based commands. The realism of rendered images is vital for their value
as image data, and Blender’s Cycles physics‑based render engine excels in producing high‑
quality renderings. Hence, Blenderwas chosen as themodeling tool for this research owing
to its versatility and rendering capabilities.

Within Blender, models were crafted using the Modeling feature, while textures re‑
sembling the finishes used in each locationwere sourced from Blenderkit and Texture. The
blueprints indicated various finishes, includingwood‑patterned flooring, wooden skirting,
plain white wallpaper, and ceramic art wall tiles. Models were constructed to incorporate
these elements. To accommodate changes in lighting conditions resulting from the sun’s
position, four models were generated and positioned to face east, west, north, and south
around a central sun lamp. Additionally, the brightness of the interior lighting was ad‑
justed lower in one of the models to consider variations in brightness and light reflection
during rendering. This methodology resulted in the creation of 3D models, as illustrated
in Figure 4.

Buildings 2024, 14, 1929 11 of 32

Figure 4. Example of 3D virtual model.

4.4.2. Creation of Virtual Defect Assets
To create virtual defect data, defects need to be incorporated onto the tile surfaces of

the previously mentioned 3D models and then rendered. One approach to applying de-
fects onto tile surfaces involves overlaying 2D defect images onto the tile texture using
shading techniques. However, this method is limited to 2D representation and fails to
capture changes in shadows or perspectives resulting from variations in lighting or cam-
era angles. Moreover, 3D representation is essential for the object, as images are generated
from the multiple viewpoints of a single wall. This necessitates data for Normal Map and
Displacement in the texture components, comprising images of the underlying base ex-
posed to defects, images in their pristine state without defects, and area information im-
ages outlining the defect regions. An illustrative example of this process is depicted in
Figure 5.

Figure 5. Image layering process.

Firstly, the base images that compose the background should consist of a material
similar to concrete or plastered surfaces found in construction sites, as seen in Figure 6a.

Figure 4. Example of 3D virtual model.

4.4.2. Creation of Virtual Defect Assets
To create virtual defect data, defects need to be incorporated onto the tile surfaces

of the previously mentioned 3D models and then rendered. One approach to applying

Buildings 2024, 14, 1929 11 of 31

defects onto tile surfaces involves overlaying 2D defect images onto the tile texture using
shading techniques. However, this method is limited to 2D representation and fails to cap‑
ture changes in shadows or perspectives resulting from variations in lighting or camera
angles. Moreover, 3D representation is essential for the object, as images are generated
from the multiple viewpoints of a single wall. This necessitates data for Normal Map and
Displacement in the texture components, comprising images of the underlying base ex‑
posed to defects, images in their pristine state without defects, and area information im‑
ages outlining the defect regions. An illustrative example of this process is depicted in
Figure 5.

Buildings 2024, 14, 1929 11 of 32

Figure 4. Example of 3D virtual model.

4.4.2. Creation of Virtual Defect Assets
To create virtual defect data, defects need to be incorporated onto the tile surfaces of

the previously mentioned 3D models and then rendered. One approach to applying de-
fects onto tile surfaces involves overlaying 2D defect images onto the tile texture using
shading techniques. However, this method is limited to 2D representation and fails to
capture changes in shadows or perspectives resulting from variations in lighting or cam-
era angles. Moreover, 3D representation is essential for the object, as images are generated
from the multiple viewpoints of a single wall. This necessitates data for Normal Map and
Displacement in the texture components, comprising images of the underlying base ex-
posed to defects, images in their pristine state without defects, and area information im-
ages outlining the defect regions. An illustrative example of this process is depicted in
Figure 5.

Figure 5. Image layering process.

Firstly, the base images that compose the background should consist of a material
similar to concrete or plastered surfaces found in construction sites, as seen in Figure 6a.

Figure 5. Image layering process.

Firstly, the base images that compose the background should consist of amaterial sim‑
ilar to concrete or plastered surfaces found in construction sites, as seen in Figure 6a. This
is because when defects occur in tiles, exposing the base, or when micro‑cracks develop,
the color recognized in the image is similar to that of concrete. Additionally, the base im‑
age is required to contain three‑dimensional information about the crack. Therefore, the
base image includes Displacement image data for three‑dimensional elements, as shown
in Figure 6b, where the cracked areas appear indented. This three‑dimensional feature al‑
lows for the expression of changes under different lighting conditions and shooting angles.
The tile texture image is then layered over this base image.

Buildings 2024, 14, 1929 12 of 32

This is because when defects occur in tiles, exposing the base, or when micro-cracks de-
velop, the color recognized in the image is similar to that of concrete. Additionally, the
base image is required to contain three-dimensional information about the crack. There-
fore, the base image includes Displacement image data for three-dimensional elements,
as shown in Figure 6b, where the cracked areas appear indented. This three-dimensional
feature allows for the expression of changes under different lighting conditions and shoot-
ing angles. The tile texture image is then layered over this base image.

(a) Background

(b) Displacement1

(c) NormalMap

(d) Displacement2

Figure 6. Images for texture.

For this purpose, comprehensive information images, such as Normal Map and Dis-
placement, are included (Figure 6c,d). After selecting the material, the tile texture’s shad-
ing nodes are imported into the Shading editor of the original base image texture. Then,
the nodes of tile texture and base texture are connected. As shown in Figure 7, during the
process of layering two image data using a Mix node, the tile texture is placed on the
upper node, while the base image data are connected to the lower node. This process lay-
ers the tile texture over the base texture. The unique Displacement of both textures is also
combined and displayed. The three-dimensional object formed by these layered images is
referred to as a “defect asset”. When image data containing area information, which dif-
ferentiates between the exposed base and the tile texture (Figure 8a,b), is added to the Mix
node in Shading, the defect becomes visible in the layered defect asset. Black areas main-
tain the tile texture, forming a tile with defects. Subsequently, multiple tiles are created
and integrated into the 3D model to form a defective 3D model.

4.4.3. Creation of Defect Models
Defect assets are strategically positioned in areas where tiles serve as finishes within

3D models, such as walls. During the placement procedure, a 2 mm thick grout line is
initially generated and positioned on the wall. Following this, tiles without defects and
tiles containing defect assets are randomly arranged on the wall, as illustrated in Figure
9a, to construct the model. Using this approach, approximately 10 variations of defect
walls were generated. The size of the tiles ranged from 30 cm × 30 cm to 30 cm × 60 cm, 40
cm × 80 cm, and 60 cm × 60 cm, resulting in four distinct sizes. The tile materials were
categorized into two types: stone and ceramic. When combined with the presence or ab-
sence of patterns, a total of 11 types were created. Each model, as previously mentioned,
was created in four variations, considering the position of the sunlight and the presence
of interior lighting, leading to variations as shown in Figure 9b. This approach resulted in
the image exhibiting greater variety, including differences in brightness and reflectivity.
Different arrangements of defect assets were implemented for each model, ensuring di-
versity in data. This process completed the preparation for rendering, following which the
rendering system was constructed.

Figure 6. Images for texture.

For this purpose, comprehensive information images, such as Normal Map and Dis‑
placement, are included (Figure 6c,d). After selecting the material, the tile texture’s shad‑
ing nodes are imported into the Shading editor of the original base image texture. Then,
the nodes of tile texture and base texture are connected. As shown in Figure 7, during the
process of layering two image data using a Mix node, the tile texture is placed on the up‑
per node, while the base image data are connected to the lower node. This process layers
the tile texture over the base texture. The unique Displacement of both textures is also
combined and displayed. The three‑dimensional object formed by these layered images is
referred to as a “defect asset”. When image data containing area information, which dif‑
ferentiates between the exposed base and the tile texture (Figure 8a,b), is added to the Mix

Buildings 2024, 14, 1929 12 of 31

node in Shading, the defect becomes visible in the layered defect asset. Black areas main‑
tain the tile texture, forming a tile with defects. Subsequently, multiple tiles are created
and integrated into the 3D model to form a defective 3D model.

Buildings 2024, 14, 1929 13 of 32

Figure 7. Blender shading nodes used for 3D model.

(a) Area Image-Normal Crack

(b) Area Image-Micro Crack

Figure 8. Area information images.

Figure 7. Blender shading nodes used for 3D model.

Buildings 2024, 14, 1929 13 of 32

Figure 7. Blender shading nodes used for 3D model.

(a) Area Image-Normal Crack

(b) Area Image-Micro Crack

Figure 8. Area information images. Figure 8. Area information images.

4.4.3. Creation of Defect Models
Defect assets are strategically positioned in areas where tiles serve as finishes within

3D models, such as walls. During the placement procedure, a 2 mm thick grout line is

Buildings 2024, 14, 1929 13 of 31

initially generated and positioned on the wall. Following this, tiles without defects and
tiles containing defect assets are randomly arranged on the wall, as illustrated in Figure 9a,
to construct the model. Using this approach, approximately 10 variations of defect walls
were generated. The size of the tiles ranged from 30 cm × 30 cm to 30 cm × 60 cm,
40 cm × 80 cm, and 60 cm × 60 cm, resulting in four distinct sizes. The tile materials
were categorized into two types: stone and ceramic. When combined with the presence or
absence of patterns, a total of 11 types were created. Eachmodel, as previously mentioned,
was created in four variations, considering the position of the sunlight and the presence
of interior lighting, leading to variations as shown in Figure 9b. This approach resulted
in the image exhibiting greater variety, including differences in brightness and reflectiv‑
ity. Different arrangements of defect assets were implemented for each model, ensuring
diversity in data. This process completed the preparation for rendering, following which
the rendering system was constructed.

Buildings 2024, 14, 1929 14 of 32

(a) Virtual Tile Defect Wall

(b) Virtual Model Arrangement

Figure 9. Tile wall with defect and model arrangement.

4.5. Building an Automatic Rendering System
There are a total of 11 Blender files created, each containing 4 models, with each

model requiring 18 images to be rendered, resulting in a total of 792 images to be pro-
cessed. However, the conventional manual rendering method, capable of rendering only
one image at a time, proves inefficient for handling such a large volume of images. Con-
sequently, a rendering system was developed to facilitate the automated generation of
multiple images based on predefined parameters. These parameters include the focus tar-
get object, focus point, distance from the object to be photographed, rotation angle, shoot-
ing height, and the destination for saving rendered images. The center of the target wall
to be photographed is selected as the target object, with the rendering target object’s co-
ordinates set as the FocusPoint. The camera is set to rotate 10 degrees at a time around
this point, totaling a 60-degree rotation to render the images. Additionally, rendering var-
iations based on height are added, focusing on the center of the wall at heights of 0.7 m,
1.4 m, and 2.2 m. Thus, 18 images are rendered from each model, and since 4 models are
rendered simultaneously in one Blender file, a total of 72 images are rendered. Moreover,
the rendering process simultaneously produces Mask images for segmentation learning
purposes.

Segmentation, a crucial technique in digital image processing and computer vision,
involves identifying and separating individual objects or specific areas within an image.
Its primary goal is to recognize various parts of an image and analyze their characteristics
like location, shape, and size in detail. Segmentation divides an image into meaningful
segments, enabling detailed extraction of information at the pixel level. For defects such
as cracks, which are small and finely detailed, it was determined that the Bounding Box
method of image classification is insufficient for accurate detection. For precise detection
of cracks, this research uses segmentation to identify the exact location and boundaries of
each crack, providing detailed information regarding the length, width, and direction of
the crack, allowing the deep learning model to perform more precise crack detection. Es-
pecially, the segmentation of cracks enables clear differentiation from the surrounding
environment, preventing confusion with other elements like grout lines. The labeling for
segmentation, which involves marking only the target object with a polygon line to dif-
ferentiate it from the surroundings, is more time-consuming than the Bounding Box
method. To automate this process, automatic annotation through Mask images was uti-
lized for efficient preprocessing, and a Mask image rendering function was added. Exam-
ples of rendered images and Mask images are shown in Figure 10a,b.

Figure 9. Tile wall with defect and model arrangement.

4.5. Building an Automatic Rendering System
There are a total of 11 Blender files created, each containing 4models, with eachmodel

requiring 18 images to be rendered, resulting in a total of 792 images to be processed. How‑
ever, the conventional manual rendering method, capable of rendering only one image at
a time, proves inefficient for handling such a large volume of images. Consequently, a ren‑
dering system was developed to facilitate the automated generation of multiple images
based on predefined parameters. These parameters include the focus target object, focus
point, distance from the object to be photographed, rotation angle, shooting height, and the
destination for saving rendered images. The center of the target wall to be photographed
is selected as the target object, with the rendering target object’s coordinates set as the
FocusPoint. The camera is set to rotate 10 degrees at a time around this point, totaling a
60‑degree rotation to render the images. Additionally, rendering variations based onheight
are added, focusing on the center of the wall at heights of 0.7 m, 1.4 m, and 2.2 m. Thus,
18 images are rendered from each model, and since 4 models are rendered simultaneously
in one Blender file, a total of 72 images are rendered. Moreover, the rendering process
simultaneously produces Mask images for segmentation learning purposes.

Segmentation, a crucial technique in digital image processing and computer vision,
involves identifying and separating individual objects or specific areas within an image.
Its primary goal is to recognize various parts of an image and analyze their characteristics
like location, shape, and size in detail. Segmentation divides an image into meaningful
segments, enabling detailed extraction of information at the pixel level. For defects such
as cracks, which are small and finely detailed, it was determined that the Bounding Box
method of image classification is insufficient for accurate detection. For precise detection
of cracks, this research uses segmentation to identify the exact location and boundaries
of each crack, providing detailed information regarding the length, width, and direction

Buildings 2024, 14, 1929 14 of 31

of the crack, allowing the deep learning model to perform more precise crack detection.
Especially, the segmentation of cracks enables clear differentiation from the surrounding
environment, preventing confusion with other elements like grout lines. The labeling for
segmentation, which involves marking only the target object with a polygon line to differ‑
entiate it from the surroundings, is more time‑consuming than the Bounding Box method.
To automate this process, automatic annotation through Mask images was utilized for ef‑
ficient preprocessing, and a Mask image rendering function was added. Examples of ren‑
dered images and Mask images are shown in Figure 10a,b.

Buildings 2024, 14, 1929 15 of 32

Figure 10. Rendered image and mask image samples.

To optimize the generation and annotation of virtual images for machine learning
model training, we developed a script in Blender that automates the rendering of realistic
and annotated images simultaneously, as outlined in Algorithm 2. This method integrates
‘Mix switcher’ nodes into the Texture Shading nodes of each component to manage the
rendering process. It renders Real and GroundTruth images concurrently, with the
GroundTruth images serving as Mask images for annotations. Cracks are marked in red,
tiles in blue, and the background in green to mitigate color variations due to the three-
dimensional characteristics of the models. This approach not only streamlines the creation
of both image types but also ensures consistent, accurate annotations essential for effective
model training, enhancing the diversity and utility of the generated images for accurate
model evaluation. For rendering, the Cycle, one of Blender’s physical render engines, was
used, and the Render’s Max sample was set to 1024 to ensure the rendering image size
was 1920 × 1080 pixels. The device for rendering was set to GPU compute, and an NVIDIA
3060ti GPU was used.

Algorithm 2 Automated Image Rendering and Mode Switching in Blender

1: Import required libraries and define global configurations

2: Create ‘mode_switcher’ node group with inputs and output

3: Insert ‘mode_switcher’ node in target collection materials

4: Define function to toggle between ‘Ground Truth’ and ‘Realistic’ modes

5: Render layers and save images for ‘real’ and ‘ground truth’ modes

6: Add camera focus on the target object with constraints

7: Relocate camera location for scene variation

8: Automate rendering process for different scenarios

4.6. Creating Segmentation Annotations
Annotation files are generated using the mask images to label the rendered images.

These mask images delineate objects with specific colors, such as red, blue, and green. To
extract these color-specific areas for annotation, the color range for each object needed to
be established. This involved converting the color model of the images from RGB to HSV.
Then, to check the HSV information of each pixel, three 3D graphs were formed with Hue,
Saturation, and Value values set on the z-axis, and the horizontal and vertical pixel ranges

(a) Rendered Image (b) Rendered Mask Image

Figure 10. Rendered image and mask image samples.

To optimize the generation and annotation of virtual images for machine learning
model training, we developed a script in Blender that automates the rendering of realis‑
tic and annotated images simultaneously, as outlined in Algorithm 2. This method inte‑
grates ‘Mix switcher’ nodes into the Texture Shading nodes of each component to manage
the rendering process. It renders Real and GroundTruth images concurrently, with the
GroundTruth images serving as Mask images for annotations. Cracks are marked in red,
tiles in blue, and the background in green to mitigate color variations due to the three‑
dimensional characteristics of the models. This approach not only streamlines the creation
of both image types but also ensures consistent, accurate annotations essential for effective
model training, enhancing the diversity and utility of the generated images for accurate
model evaluation. For rendering, the Cycle, one of Blender’s physical render engines, was
used, and the Render’s Max sample was set to 1024 to ensure the rendering image size was
1920 × 1080 pixels. The device for rendering was set to GPU compute, and an NVIDIA
3060ti GPU was used.

Algorithm 2 Automated Image Rendering and Mode Switching in Blender

1: Import required libraries and define global configurations
2: Create ‘mode_switcher’ node group with inputs and output
3: Insert ‘mode_switcher’ node in target collection materials
4: Define function to toggle between ‘Ground Truth’ and ‘Realistic’ modes
5: Render layers and save images for ‘real’ and ‘ground truth’ modes
6: Add camera focus on the target object with constraints
7: Relocate camera location for scene variation
8: Automate rendering process for different scenarios

Buildings 2024, 14, 1929 15 of 31

4.6. Creating Segmentation Annotations
Annotation files are generated using the mask images to label the rendered images.

These mask images delineate objects with specific colors, such as red, blue, and green. To
extract these color‑specific areas for annotation, the color range for each object needed
to be established. This involved converting the color model of the images from RGB to
HSV. Then, to check the HSV information of each pixel, three 3D graphs were formedwith
Hue, Saturation, and Value values set on the z‑axis, and the horizontal and vertical pixel
ranges set on the x and y axes, respectively, as shown in Figure 11a. Additionally, the
distribution of Gradient Angles for the Canny edge algorithm was checked at the pixel
level to detect fine cracks, with results shown in Figure 11b. The HSV range for the red
area was determined to be (121, 255), (100, 255), and (0, 251), and, for the green area, it
was (50, 105), (100, 255), and (0, 255). The parentheses denote minimum and maximum
values. The blue area was excluded from range checking for processing efficiency as all
areas except green were considered blue. The Gradient Angle distribution for cracks (red
areas) ranged from 0 to 150,000. Through trial and error, the range for the Canny edge
algorithm was optimized for detection accuracy with a range from 1 to 1500 found to be
most effective.

Buildings 2024, 14, 1929 16 of 32

set on the x and y axes, respectively, as shown in Figure 11a. Additionally, the distribution
of Gradient Angles for the Canny edge algorithm was checked at the pixel level to detect
fine cracks, with results shown in Figure 11b. The HSV range for the red area was deter-
mined to be (121, 255), (100, 255), and (0, 251), and, for the green area, it was (50, 105), (100,
255), and (0, 255). The parentheses denote minimum and maximum values. The blue area
was excluded from range checking for processing efficiency as all areas except green were
considered blue. The Gradient Angle distribution for cracks (red areas) ranged from 0 to
150,000. Through trial and error, the range for the Canny edge algorithm was optimized
for detection accuracy with a range from 1 to 1500 found to be most effective.

(a) HSV Plot (b) Gradient Angle

Figure 11. HSV and Gradient Angle information for automated annotation.

Once the color and Gradient Angle ranges were set, annotations were extracted by
adjusting additional parameters such as dilate and erode values, creating index IDs for
each label, and modifying the coordinates of the polygon points. Dilate expands the rec-
ognized color area while eroding the expanded range allowing for more precise area de-
tection and extraction. These parameter values were also determined through trial and
error experimentation, with dilate set to 10,10 and erode to 8,8. After identifying areas, the
RETR_EXTERNAL library was used to extract only the outer boundary coordinates of the
areas. This approach prevents the misidentification of empty spaces inside a single bound-
ary of a crack, which is crucial for accurate labeling in a deep learning system. The ex-
tracted coordinates were in pixel format. The detail for this process is outlined in Algo-
rithm 3.

Algorithm 3 Create Annotation File from Mask Images

1: Import required libraries (os, cv2, numpy, json)

2: Define functions for color checking and mask processing

3: Initialize variables and set HSV color thresholds

4: for each image file in the directory do

5: Read and convert image to HSV color space

6: Initialize and apply color thresholds to create masks

7: Refine masks and handle overlapping areas

8: for each mask (red, green, blue) do

9: Extract contours and create annotations

10: end for

11: end for

12: Append image details to the ‘images’ list

13: Define categories for annotation

14: Create COCO format output dictionary

15: Write the output to a JSON file

Figure 11. HSV and Gradient Angle information for automated annotation.

Once the color and Gradient Angle ranges were set, annotations were extracted by
adjusting additional parameters such as dilate and erode values, creating index IDs for
each label, and modifying the coordinates of the polygon points. Dilate expands the rec‑
ognized color area while eroding the expanded range allowing for more precise area de‑
tection and extraction. These parameter values were also determined through trial and
error experimentation, with dilate set to 10,10 and erode to 8,8. After identifying areas,
the RETR_EXTERNAL library was used to extract only the outer boundary coordinates
of the areas. This approach prevents the misidentification of empty spaces inside a sin‑
gle boundary of a crack, which is crucial for accurate labeling in a deep learning system.
The extracted coordinates were in pixel format. The detail for this process is outlined in
Algorithm 3.

This script automates the conversion of mask images into a format suitable for ma‑
chine learningmodel training. The script initiates by importing essential libraries for image
manipulation anddata handling. Subsequently, the algorithm iterates through each image,
applying color thresholds to segregate different features based on hues in the HSV color
space, and isolates these features to generate precise masks. The masks are then refined
to handle overlapping areas, thereby ensuring an accurate representation. For each color‑
coded mask, the script extracts contours to create detailed annotations. This extraction
is of paramount importance, as it translates visual data into actionable insights for mod‑
els. The process culminates in the compilation of these details into a JSON file in a format
consistent with the COCO standard, thereby ensuring compatibility with a range of deep
learning frameworks. This method enhances the efficiency of preparing large datasets and
underscores the script’s utility in streamlining the annotation process.

Buildings 2024, 14, 1929 16 of 31

Algorithm 3 Create Annotation File from Mask Images

1: Import required libraries (os, cv2, numpy, json)
2: Define functions for color checking and mask processing
3: Initialize variables and set HSV color thresholds
4: for each image file in the directory do
5: Read and convert image to HSV color space
6: Initialize and apply color thresholds to create masks
7: Refine masks and handle overlapping areas
8: for each mask (red, green, blue) do
9:  Extract contours and create annotations
10: end for
11: end for
12: Append image details to the ‘images’ list
13: Define categories for annotation
14: Create COCO format output dictionary
15: Write the output to a JSON file
16: Import required libraries (os, cv2, numpy, json)

The pixel coordinates, obtained from the Python script, originate from the upper‑left
corner of the image. These coordinates are incompatible with the YOLOv8 deep learning
model because YOLO uses normalized (0 to 1) coordinates. To adjust the coordinates for
YOLO, the x‑coordinates are divided by the width of the image and the y‑coordinates by
its height. This normalization process ensures that the coordinates range between 0 and
1. This normalization makes the coordinates suitable for use in the YOLO model. The red
area’s ID was set to 0 and the blue area to 2. ID 1 was omitted in this 3D model as it rep‑
resents other materials installed on the tiles in real images. After assigning crack as index
0 and tile as index 2, the final index settings were completed. Additionally, the standard
YOLO labeling file format, including image append, licenses, and infowas established, and
the annotation file extraction was conducted. This completes the preparation for training
the deep learning model.

5. Results
5.1. Model for Training—YOLOv8

We chose YOLOv8 as our deep learning model because it stands out for its speed, ef‑
ficiency, ease of use, and impressive precision. Moreover, it offers multiple versions, pro‑
viding flexibility to choose the most fitting one for our laboratory setup. We specifically
opted for this model for object recognition through segmentation. Recent research adopt‑
ing segmentation techniques has also highlighted the effectiveness of YOLOv8 [93,94].

As illustrated in Figure 12, the YOLOv8 architecture comprises three main components:
• Backbone Network: This is the primary feature extraction module of the YOLOv8, us‑

ing the CSP (CSP (Cross‑Stage Partial): A network design that enhances feature prop‑
agation and reuse). Darknet, an enhanced version of the Cross‑Stage Partial (CSP)
architecture [95]. It processes input images to extract pivotal features for object detec‑
tion, benefiting from pretraining on datasets such as ImageNet[D] [96].

• NeckNetwork: EmployingaPAN‑FPN(PAN‑FPN(PathAggregationNetwork—Feature
Pyramid Network): Combines features at different levels to improve the detection ef‑
ficacy across scales) structure inspired by PANet, this part of the model enhances the
lightweight design while maintaining high performance. It facilitates efficient feature
integration across different scales, crucial for detecting objects of varying sizes [97].

• Detection Head: The decoupled head in YOLOv8 separates tasks of classification
and bounding box regression. It utilizes Binary Cross‑Entropy (BCE) for classifica‑
tion and combines Distribution Focal Loss (DFL) with CIoU loss for precise bound‑
ing box predictions [96]. This modular approach optimizes both classification and
localization accuracy.

Buildings 2024, 14, 1929 17 of 31

Buildings 2024, 14, 1929 18 of 32

YOLOv8 incorporates the Task-Aligned Assigner, which dynamically assigns sam-
ples. This feature enhances the model’s accuracy and resilience by merging classification
scores with the Intersection over Union metric. This integration refines prediction quality
and mitigates low-quality prediction boxes. The anchor-free approach of this model sig-
nificantly contributes to precise object detection across different scales and orientations.

The training environment made use of Google Colab, a cloud-based Jupyter Note-
book platform offered by Google. It utilized a T4 GPU, allowing access to 35GB of memory
within the Colab environment. The setup included PyTorch version 2.1.0 and CUDA
toolkit version 11.8.

Figure 12. Architecture of Yolov8 model.

5.2. Model Performance Evaluation Method
There are several metrics used to evaluate the performance of object detection mod-

els. Commonly used indicators include Accuracy, Precision, Recall, F1 Score, and Average
Precision (AP). Accuracy is the ratio of correct predictions among all predictions, while
Precision is the ratio of actual positives among those predicted as positive. Recall
measures the ratio of actual positives correctly predicted as positive. Average Precision
considers the relationship between Precision and Recall as a performance metric, provid-
ing a comprehensive evaluation of object detection models. In this study, the F1 Score,
mAP, and PR (Precision–Recall) were chosen as the metrics for comparing model perfor-
mance.
• Precision: As shown in Equation (1), it is defined as the ratio of true positive predic-

tions to the total number of predicted positives and measures the model’s accuracy
in predicting positive instances. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = TP(TP + FP) (1)

TP (True Positives): The number of correct positive predictions made by the model.;
FP (False Positives): The number of incorrect predictions where the model predicted
an object as positive when it is negative.

• Recall: As shown in Equation (2), also known as sensitivity, it is the ratio of true pos-
itive predictions to the total number of actual positive instances, assessing the
model’s ability to identify all relevant instances.

Figure 12. Architecture of Yolov8 model.

YOLOv8 incorporates the Task‑Aligned Assigner, which dynamically assigns sam‑
ples. This feature enhances the model’s accuracy and resilience by merging classification
scores with the Intersection over Union metric. This integration refines prediction quality
and mitigates low‑quality prediction boxes. The anchor‑free approach of this model sig‑
nificantly contributes to precise object detection across different scales and orientations.

The training environment made use of Google Colab, a cloud‑based Jupyter Note‑
book platform offered by Google. It utilized a T4 GPU, allowing access to 35GB of mem‑
ory within the Colab environment. The setup included PyTorch version 2.1.0 and CUDA
toolkit version 11.8.

5.2. Model Performance Evaluation Method
There are several metrics used to evaluate the performance of object detection mod‑

els. Commonly used indicators include Accuracy, Precision, Recall, F1 Score, and Average
Precision (AP). Accuracy is the ratio of correct predictions among all predictions, while Pre‑
cision is the ratio of actual positives among those predicted as positive. Recall measures
the ratio of actual positives correctly predicted as positive. Average Precision considers
the relationship between Precision and Recall as a performance metric, providing a com‑
prehensive evaluation of object detection models. In this study, the F1 Score, mAP, and
PR (Precision–Recall) were chosen as the metrics for comparing model performance.
• Precision: As shown in Equation (1), it is defined as the ratio of true positive predic‑

tions to the total number of predicted positives and measures the model’s accuracy in
predicting positive instances.

Precision =
TP

(TP+ FP)
(1)

TP (True Positives): The number of correct positive predictions made by the model.;
FP (False Positives): The number of incorrect predictions where the model predicted
an object as positive when it is negative.

Buildings 2024, 14, 1929 18 of 31

• Recall: As shown in Equation (2), also known as sensitivity, it is the ratio of true posi‑
tive predictions to the total number of actual positive instances, assessing the model’s
ability to identify all relevant instances.

Recall =
TP

(TP+ FN)
(2)

FN (FalseNegatives): The number of incorrect predictionswhere themodel predicted
an object as negative when it is positive.

• F1 Score: The F1 Score calculates the harmonic mean of the model’s Precision and
Recall; it is useful in assessing models with imbalanced class distributions or when
it is crucial to balance both Precision and Recall [98]. The formula for the F1 Score is
as follows:

F1 = 2 × (Precision× Recall)
(Precision+ Recall)

(3)

TP (True Positive), FP (False Positive), and FN (False Negative) are key indicators
that represent how well a model’s predictions match actual values, expressed as integers.
These indicators are used to calculate the F1 Score, and the results of model training are
often represented in a graph with the F1 Score on the y‑axis and Confidence values on
the x‑axis. However, in this study, an F‑1 score at a 0.25 confidence threshold was used
to analyze that of the Tile and Crack class. Moreover, the author used three types of F‑1
score—macro (Equation (3)), weighted (Equation (4)), andmicro averaged (Equation (5))—
to analyze the F‑1 score, aiming to account for data imbalance across classes.
• Macro F1: TheMacro F1 Score averages the F1 scores of all classes, providing an equal

weight to each, regardless of their frequency.
• Weighted F1: The Weighted F1 Score adjusts for class imbalance by weighting each

class’s F1 score according to its prevalence in the datasetwhich is different fromMacro
F1 metrics.

F1weighted =
N

∑
i=1

WiF1i (4)

• Micro F1: The Micro F1 Score aggregates outcomes across all classes to reflect overall
accuracy, emphasizing the model’s total effectiveness across all instances.

F1micro = 2 × (Precisionmicro × Recallmicro)

(Precisionmicro + Recallmicro)
(5)

In fact, the Exception class is a very small percentage compared to Tile and Crack
classes; therefore, it requires the use of a different type of F‑1 score. In this study, the
number of data is used for relative weight in obtaining the weighted average F‑1 score.
• Confidence represents the degree of certainty in the model’s predictions. Typically,

object detectionmodels produce a probability value for each prediction, indicating the
level of confidence in detecting the object. In this study, both confidence andF‑1 scores
have been used to present comprehensive learning outcomes across all classes. The
F‑1 score, which represents the optimal balance between precision and recall attained
by the model at the given confidence threshold, is illustrated in the following section.

• Themean average precision is an aggregatedmeasure of performance across multiple
classes or over different recall levels. The Average Precision (AP) for a single class is
calculated as the area under the PR curve for that class as shown in Equation (6). It can
be interpreted as theweightedmean of precisions achieved at each threshold, with the
increase in recall from the previous threshold used as the weight.

AP = ∑n(Rn − Rn−1)Pn (6)

Buildings 2024, 14, 1929 19 of 31

• where Pn and Rn are the precision and recall at the nth threshold. ThemeanAP (mAP)
is obtained by averaging the APs across all classes as shown in Equation (7).

mAP =
1
N ∑N

i=1 APi (7)

• where “N” represents the number of classes, themean average precision (mAP) serves
as a single metric summarizing the model’s performance across all classes. This met‑
ric is commonly used in object detection benchmarks where the detection threshold
is varied, and detections are ranked by their predicted scores. In this research, two
variants of mAP were utilized: mAP(B) and mAP(M). mAP(B) indicates the best per‑
formance achieved by themodel at the stage during training for a specific intersection
over the Union (IoU) threshold, while mAP(M) represents the average of the mean
average precision across all classes. This provides an overview of the model’s over‑
all performance across the dataset, without being skewed by exceptionally high or
low scores in any particular class. IoU thresholds of 0.5 and 0.5–0.95 were utilized in
this study.
The performance graph offers insights into how the model balances Precision and Re‑

call achieving its best performance, which is crucial for real‑world applications. The out‑
comes of training the dataset with the YOLOv8 model are depicted through metrics such
as F1 Score, mAP, and PR. By comparing these metrics, the influence of image augmenta‑
tion using virtual datasets on accuracy is evaluated. This assessment aids in understanding
whether virtual image datasets make a meaningful contribution to the results.

5.3. Dataset Creation for Comparative Validation
To validate virtual data, a comparative analysis against real image data was con‑

ducted. Table 3 summarizes the datasets used. Two dataset groups were used: the first
assessed the standalone value of virtual images and their combination with real images in
a hybrid dataset. The second group evaluated accuracy differences influenced by varying
mix ratios of real and virtual images.

Table 3. Dataset groups.

Dataset Image Combination

Dataset: group 1
Real Image 253
Virtual Image 253

Real Image 150 + Virtual Image 150

Dataset: group 2
Real Image 253 + Virtual Image 800

Real Image 800
Real Image 800 + Virtual Image 800

The first dataset group aims to evaluate the value of virtual images as image data by
comparing the accuracy differences between real and virtual images. It also confirmed the
performance of the hybrid dataset, which combines virtual and real‑site images. The re‑
sults obtained from training on 253 real images (real image dataset) were compared with
those from training on 253 randomly selected virtual images (virtual image dataset), along
with the accuracy of the Hybrid dataset. The Hybrid dataset consists of a random assort‑
ment of 253 images from a total pool of 300 images, maintaining a one‑to‑one ratio. This
evaluation aimed to determinewhether virtual images alone could sufficiently replace real
images for training deep learning models and to assess the potential for virtual images to
substitute real images within the Hybrid dataset.

The second group was designed to evaluate the difference in accuracy depending on
the mix ratio of real and virtual images. A dataset mixing 253 real images with 800 vir‑
tual images was prepared, and this Hybrid dataset was constituted by mixing randomly
selected virtual images from the pool of 792 virtual images and 253 real images. In com‑

Buildings 2024, 14, 1929 20 of 31

parison, a dataset of 800 images was prepared by augmenting 253 real images. The aug‑
mentation techniques applied included flipping, rotating, shearing, blurring, adding noise,
multiplying, and adjusting contrast. This allowed for the assessment of the difference in
accuracy between augmenting real images and substituting the augmentation with virtual
images. Furthermore, a dataset was created by mixing all images, including 800 virtual
images and augmented real images, and this was compared to the two previous datasets
to assess the degree of improvement in accuracy when virtual image data and augmented
real images were combined. The comparative analysis of these two datasets validated the
effectiveness of the virtual image data and evaluated the practical applicability.

In the study, both validation and test datasets consisted exclusively of real images.
This configuration was essential to objectively assess the model’s performance across var‑
ious datasets. The consistency in dataset composition for validation and testing ensures
that the performance metrics are comparable and reliable, highlighting the true impact of
using virtual images during training.

5.4. Learning Results
5.4.1. Results of Dataset Group 1

The aforementioned datasets have undergone deep learning training with consistent
parameters: 500 epochs, batch size 128, resized to 640× 640, learning rate of 0.01, and early
stopping near epoch 360. Table 4 displays the learning outcomes for Group 1, presenting
object detection performance metrics: mAP, Precision, Recall, and F‑1 score.

Table 4. The object detection performance of Group 1.

Dataset mAP
50(B)

mAP
50‑95(B)

mAP
50(M)

mAP
50‑95(M) Precision Recall F‑1 Score

(Confidence)

Real Image 253 0.4895 0.370 0.451 0.312 0.345 0.345 0.45
(0.609)

Virtual Image 253 0.184 0.0844 0.155 0.0714 0.199 0.199 0.2
(0.279)

Real Image 150
Virtual Image 150 0.497 0.399 0.474 0.282 0.430 0.430 0.5

(0.704)

As these results are aggregated across all classes, Tables 5 and 6 detail the results for
our primary targets, Tile and Crack, with a threshold set at 0.25. While Table 4 shows
the result of learning comprehensively. The Hybrid dataset showed the best performance
among them. The key findings of Table 4 are as follows: (1) Except for mAP50‑95(M), the
hybrid data consistently performs best across other metrics. (2) It is noteworthy that the
F‑1 score for the hybrid dataset reached 0.704 in confidence, even surpassing the dataset
composed solely of an equivalent number of real images. (3) The dataset comprising only
virtual images records considerably lower scores. (4) The mAP results showed that Real
Image 150 Virtual Image 150, Real Image 253, and Virtual Image 253 performed the best,
in that order. These results prompt further discussion, addressed in the following section.

Table 5. Result of Tile class object detection from Group 1.

Dataset Precision Recall F‑1 Score (0.25)

Real Image 253 0.862 0.769 0.813

Virtual Image 253 0.4655 0.628 0.535

Real Image 150
Virtual Image 150 0.879 0.8226 0.85

Buildings 2024, 14, 1929 21 of 31

Table 6. Result of Crack class object detection from Group 1.

Dataset Precision Recall F‑1 Score (0.25)

Real Image 253 0.356 0.256 0.2984

Virtual Image 253 0.01695 0.25 0.03175

Real Image 150
Virtual Image 150 0.3729 0.373 0.3729

The results of Tile class detection were better than that of Tile class. For detailed in‑
quiry, the key points of Table 5 are as follows: (1) Both the real image and the hybrid
datasets show high detection accuracy for tiles. (2) The recall value of the dataset contain‑
ing only virtual images is respectable at 0.628, but the precision value is relatively low at
0.4655. (3) The hybrid dataset exhibits a higher recognition rate for the tiles, with an F‑1
score of 0.85. Following this, Table 6 summarizes the results for the Crack class. It shows
the following results: (1) Overall values of Crack detection remained low compared to that
of Tile detection. (2) The hybrid dataset achieves the highest accuracy with an F‑1 score
of 0.3729. (3) The virtual image dataset achieves a recall value similar to the real image
dataset at 0.25, but the precision value is notably low at 0.01675.

Figure 13 illustrates the learning outcomes across three datasets, each evaluated using
Macro, Micro, and Weighted F‑1 scores. These metrics provide insights into model perfor‑
mance under varying conditions of class imbalance and data representation. The Real and
Hybrid datasets demonstrate improvements in F‑1 scores in the order of Macro, Weighted,
and Micro, indicating a consistent enhancement across broader to more specific instances.
Conversely, the Virtual dataset exhibits the highest Weighted F‑1 score, followed byMicro
andMacro. Figure 14 provides a visual representation of the test results obtained from the
learning outcomes. The leftmost image serves as the ground truth, while the subsequent
images on the right represent the test outcomes. It shows that the virtual dataset exhibits
a low detection rate.

Buildings 2024, 14, 1929 22 of 32

score of 0.85. Following this, Table 6 summarizes the results for the Crack class. It shows
the following results: (1) Overall values of Crack detection remained low compared to that
of Tile detection. (2) The hybrid dataset achieves the highest accuracy with an F-1 score of
0.3729. (3) The virtual image dataset achieves a recall value similar to the real image da-
taset at 0.25, but the precision value is notably low at 0.01675.

Figure 13 illustrates the learning outcomes across three datasets, each evaluated us-
ing Macro, Micro, and Weighted F-1 scores. These metrics provide insights into model
performance under varying conditions of class imbalance and data representation. The
Real and Hybrid datasets demonstrate improvements in F-1 scores in the order of Macro,
Weighted, and Micro, indicating a consistent enhancement across broader to more specific
instances. Conversely, the Virtual dataset exhibits the highest Weighted F-1 score, fol-
lowed by Micro and Macro. Figure 14 provides a visual representation of the test results
obtained from the learning outcomes. The leftmost image serves as the ground truth,
while the subsequent images on the right represent the test outcomes. It shows that the
virtual dataset exhibits a low detection rate.

Table 6. Result of Crack class object detection from Group 1.

Dataset Precision Recall F-1 Score (0.25)
Real Image 253 0.356 0.256 0.2984

Virtual Image 253 0.01695 0.25 0.03175
Real Image 150

Virtual Image 150
0.3729 0.373 0.3729

Figure 13. Result by F-1 score types (Group 1).

(a) Prediction test

(b) Real253

(c) Virtual253

(d) Real150 Virtual150

Figure 14. Prediction Result (Group 1).

5.4.2. Results of Dataset Group 2
Table 7 describes the object detection performance for each dataset, with Tables 8 and

9 detailing the performance specifically for the Tile and Crack classes, respectively. All
test images in these datasets were consistently used. For the result, the Real 800 and

0.307

0.1416

0.3682

0.3114

0.2332

0.4189

0.3445

0.1986

0.4302

0

0.1

0.2

0.3

0.4

0.5

Real Image 253 Virtual Image 253 Real 150 Virtual 150

Macro Weighted Micro

Figure 13. Result by F‑1 score types (Group 1).

Buildings 2024, 14, 1929 22 of 32

score of 0.85. Following this, Table 6 summarizes the results for the Crack class. It shows
the following results: (1) Overall values of Crack detection remained low compared to that
of Tile detection. (2) The hybrid dataset achieves the highest accuracy with an F-1 score of
0.3729. (3) The virtual image dataset achieves a recall value similar to the real image da-
taset at 0.25, but the precision value is notably low at 0.01675.

Figure 13 illustrates the learning outcomes across three datasets, each evaluated us-
ing Macro, Micro, and Weighted F-1 scores. These metrics provide insights into model
performance under varying conditions of class imbalance and data representation. The
Real and Hybrid datasets demonstrate improvements in F-1 scores in the order of Macro,
Weighted, and Micro, indicating a consistent enhancement across broader to more specific
instances. Conversely, the Virtual dataset exhibits the highest Weighted F-1 score, fol-
lowed by Micro and Macro. Figure 14 provides a visual representation of the test results
obtained from the learning outcomes. The leftmost image serves as the ground truth,
while the subsequent images on the right represent the test outcomes. It shows that the
virtual dataset exhibits a low detection rate.

Table 6. Result of Crack class object detection from Group 1.

Dataset Precision Recall F-1 Score (0.25)
Real Image 253 0.356 0.256 0.2984

Virtual Image 253 0.01695 0.25 0.03175
Real Image 150

Virtual Image 150
0.3729 0.373 0.3729

Figure 13. Result by F-1 score types (Group 1).

(a) Prediction test

(b) Real253

(c) Virtual253

(d) Real150 Virtual150

Figure 14. Prediction Result (Group 1).

5.4.2. Results of Dataset Group 2
Table 7 describes the object detection performance for each dataset, with Tables 8 and

9 detailing the performance specifically for the Tile and Crack classes, respectively. All
test images in these datasets were consistently used. For the result, the Real 800 and

0.307

0.1416

0.3682

0.3114

0.2332

0.4189

0.3445

0.1986

0.4302

0

0.1

0.2

0.3

0.4

0.5

Real Image 253 Virtual Image 253 Real 150 Virtual 150

Macro Weighted Micro

Figure 14. Prediction Result (Group 1).

Buildings 2024, 14, 1929 22 of 31

5.4.2. Results of Dataset Group 2
Table 7 describes the object detection performance for each dataset, with Tables 8 and 9

detailing the performance specifically for the Tile and Crack classes, respectively. All test
images in these datasets were consistently used. For the result, the Real 800 and Virtual
800 datasets achieved the highest performance. The key points in Table 7 are as follows:
(1) The dataset containing both 800 real and 800 virtual images exhibits the highest detec‑
tion accuracy. (2) The F‑1 score of 0.55 was observed for the dataset using only 800 real
images, which increased to 0.57 when augmented with 800 virtual images. (3) The F‑1
score for the dataset with 253 real and 800 virtual images was 0.05 lower than that of the
dataset with 800 real images. (4) The precision and recall values for the dataset with 253
real and 800 virtual images at a threshold of 0.25 were 0.0323 and 0.033 higher than that of
the dataset with 800 real images. (5) ThemAP results showed that Real 800 Virtual 800 had
the best performance for all mAP. Real 800 and Real 253 Virtual 800 ranked differently for
each mAP. Real 800 achieved a higher mAP score than Real 253 Virtual 800 in mAP50(B)
and mAP50‑95(B).

Table 7. The object detection performance of Group 2.

Dataset mAP
50(B)

mAP
50‑95(B)

mAP
50(M)

mAP
50‑95(M) Precision Recall F1 score

(Confidence)

Real 253
Virtual 800 0.49417 0.36563 0.47184 0.319 0.4123 0.413 0.5

(0.698)

Real 800 0.51672 0.37936 0.45243 0.30378 0.38 0.38 0.55
(0.489)

Real 800
Virtual 800 0.52284 0.42912 0.47946 0.31572 0.46 0.46 0.57

(0.627)

Table 8. Result of Tile class object detection from Group 2.

Dataset Precision Recall F‑1 Score (0.25)

Real 253
Virtual 800 0.862 0.926 0.893

Real 800 0.8772 0.794 0.833

Real 800
Virtual 800 0.8597 0.891 0.875

Table 9. Result of Crack class object detection from Group 2.

Dataset Precision Recall F‑1 Score (0.25)

Real 253
Virtual 800 0.339 0.3704 0.354

Real 800 0.424 0.27174 0.331

Real 800
Virtual 800 0.322 0.432 0.369

Table 8 presents results for the Tile class alone, and the results are as follows: (1) The
Real 253 Virtual 800 dataset achieves the highest recall and F‑1 values of 0.926 and 0.893,
respectively. (2) The Real 800 dataset achieved the highest score in Precision with 0.8772.
(3) The Real 800 Virtual 800 dataset achieved 0.891 and 0.875 for Recall and F‑1 scores,
which is better than the Real 800 dataset but lower than the other.

The key points of Table 9 are as follows: (1) The Real 800 dataset, which uses only
real images, achieves the highest precision for the Crack class, but shows a significantly
reduced recall value of 0.27. (2) The Real 800 Virtual 800 images dataset’s recall value

Buildings 2024, 14, 1929 23 of 31

achieved 0.432 higher than the Real 800 dataset. (3) The Real 253 Virtual 800 dataset
achieved better precision than Real 800 Virtual 800 with 0.339 and its recall was higher
than the Real 800 dataset with 0.3704.

Figure 15 offers a comparative analysis of the F‑1 scores as Figure 13. It shows that
the datasets containing virtual images achieved the highestweighted average F‑1 scores fol‑
lowed by Micro and Macro. Conversely, datasets consisting of only real images achieved
the highest on Macro but lowest on a weighted average. Following Figure 16 visually
presents the prediction results obtained from training on each dataset, supporting the com‑
parative analysis.

Buildings 2024, 14, 1929 24 of 32

Real 800 0.424 0.27174 0.331
Real 800

Virtual 800 0.322 0.432 0.369

Figure 15. Results obtained using F-1 score types (Group 2).

(a) Real800

(b) Real253 Virtual800

(c) Real800 Virtual800

Figure 16. Prediction result (Group 2).

6. Discussion and Limitations
6.1. Discussion

The results for Group 1 in Table 4 demonstrate that the object detection rate is higher
with the same number of hybrid datasets compared to real images alone, indicating that
the images generated in the virtual environment are adequate and valuable as data. The
mAP, precision, recall, and F-1 scores all exhibit improvement. However, it is noticeable
that the accuracy is substantially low for the dataset solely using virtual images. This dis-
crepancy is likely attributed to the domain shift phenomenon, resulting from training with
a dataset of virtual images and validating with a dataset of real images.

Moreover, the comparative analysis of the F-1 scores showed that the Real and Hy-
brid datasets in Group 1 demonstrated improvements in F-1 scores in the order of Macro,
Weighted, and Micro, indicating a consistent enhancement across broader to more specific
instances. While the Virtual dataset in Group 1 exhibits the highest Weighted F-1 score,
followed by Micro and Macro. This variation underscores the distinct impacts of data
types on model training, reflecting the virtual dataset’s limited ability to generalize across
diverse conditions compared to real or hybrid data configurations. For the Group 2 da-
tasets combining 253 real and 800 virtual images, as well as those with 800 real and virtual
images, the highest scores are observed in Weighted F-1, followed by Micro and Macro.
This pattern indicates that these datasets achieve better average performance across clas-
ses, particularly when class imbalance is adjusted for in the weighting. In contrast, the
dataset comprised solely of 800 real images exhibits the highest scores in Macro and Micro

0.3395
0.3911

0.435980.42444

0.34118

0.4876
0.4128

0.38
0.46

0

0.1

0.2

0.3

0.4

0.5

0.6

Real 253 Virtual 800 Real 800 Real 800 Virtual 800

Macro Weighted Micro

Figure 15. Results obtained using F‑1 score types (Group 2).

Buildings 2024, 14, 1929 24 of 32

Real 800 0.424 0.27174 0.331
Real 800

Virtual 800 0.322 0.432 0.369

Figure 15. Results obtained using F-1 score types (Group 2).

(a) Real800

(b) Real253 Virtual800

(c) Real800 Virtual800

Figure 16. Prediction result (Group 2).

6. Discussion and Limitations
6.1. Discussion

The results for Group 1 in Table 4 demonstrate that the object detection rate is higher
with the same number of hybrid datasets compared to real images alone, indicating that
the images generated in the virtual environment are adequate and valuable as data. The
mAP, precision, recall, and F-1 scores all exhibit improvement. However, it is noticeable
that the accuracy is substantially low for the dataset solely using virtual images. This dis-
crepancy is likely attributed to the domain shift phenomenon, resulting from training with
a dataset of virtual images and validating with a dataset of real images.

Moreover, the comparative analysis of the F-1 scores showed that the Real and Hy-
brid datasets in Group 1 demonstrated improvements in F-1 scores in the order of Macro,
Weighted, and Micro, indicating a consistent enhancement across broader to more specific
instances. While the Virtual dataset in Group 1 exhibits the highest Weighted F-1 score,
followed by Micro and Macro. This variation underscores the distinct impacts of data
types on model training, reflecting the virtual dataset’s limited ability to generalize across
diverse conditions compared to real or hybrid data configurations. For the Group 2 da-
tasets combining 253 real and 800 virtual images, as well as those with 800 real and virtual
images, the highest scores are observed in Weighted F-1, followed by Micro and Macro.
This pattern indicates that these datasets achieve better average performance across clas-
ses, particularly when class imbalance is adjusted for in the weighting. In contrast, the
dataset comprised solely of 800 real images exhibits the highest scores in Macro and Micro

0.3395
0.3911

0.435980.42444

0.34118

0.4876
0.4128

0.38
0.46

0

0.1

0.2

0.3

0.4

0.5

0.6

Real 253 Virtual 800 Real 800 Real 800 Virtual 800

Macro Weighted Micro

Figure 16. Prediction result (Group 2).

6. Discussion and Limitations
6.1. Discussion

The results for Group 1 in Table 4 demonstrate that the object detection rate is higher
with the samenumber of hybrid datasets compared to real images alone, indicating that the
images generated in the virtual environment are adequate and valuable as data. The mAP,
precision, recall, and F‑1 scores all exhibit improvement. However, it is noticeable that the
accuracy is substantially low for the dataset solely using virtual images. This discrepancy
is likely attributed to the domain shift phenomenon, resulting from training with a dataset
of virtual images and validating with a dataset of real images.

Moreover, the comparative analysis of the F‑1 scores showed that the Real and Hy‑
brid datasets in Group 1 demonstrated improvements in F‑1 scores in the order of Macro,
Weighted, andMicro, indicating a consistent enhancement across broader to more specific
instances. While the Virtual dataset in Group 1 exhibits the highestWeighted F‑1 score, fol‑
lowed by Micro and Macro. This variation underscores the distinct impacts of data types
on model training, reflecting the virtual dataset’s limited ability to generalize across di‑
verse conditions compared to real or hybrid data configurations. For the Group 2 datasets

Buildings 2024, 14, 1929 24 of 31

combining 253 real and 800 virtual images, as well as those with 800 real and virtual im‑
ages, the highest scores are observed in Weighted F‑1, followed by Micro and Macro. This
pattern indicates that these datasets achieve better average performance across classes, par‑
ticularlywhen class imbalance is adjusted for in theweighting. In contrast, the dataset com‑
prised solely of 800 real images exhibits the highest scores in Macro and Micro F‑1, with
Weighted F‑1 being the lowest. This suggests that this dataset performs well in generaliz‑
ing across all classes equally and in capturing all positive instances but may underperform
in classes with fewer samples.

The difference in these patterns, compared to previous results where Real andHybrid
datasets consistently showed enhancements in the order of Macro, Weighted, and Micro,
suggests that the inclusion of a larger proportion of real images tends to stabilize perfor‑
mance across different class distributions. This highlights the influence of real‑world data
in training models that are robust and less sensitive to class imbalance, as opposed to vir‑
tual data that might not capture the full spectrum of real‑world variability. However, it is
noticeable that the results of train solely on virtual images are markedly low.

Domain shift is a common phenomenon in studies using synthetic images. When val‑
idation is performed on synthetic images, the accuracy tends to be very high; however,
when validation on real images, the accuracy drops significantly [72]. Nevertheless, this
phenomenon disappears when a hybrid dataset is used, leading to improved accuracy.
This demonstrates that incorporating real images into a dataset comprising virtual images
canmitigate domain shift, allowing virtual images to effectively train deep learningmodels
alongside real images. However, in order to train using only virtual images, it is necessary
to address the domain shift phenomenon. This can be achieved by either minimizing the
domain shift phenomenon through domain generalization or randomization or by mini‑
mizing the reality gap between the virtual image and the real image.

The accuracy improvements need to be examined in detail for each class type. For the
Tile class, accuracy is generally high. Both the real image dataset and the hybrid dataset
exhibit F‑1 values above 0.8, along with good precision and recall values. These values
surpass those in Table 4, which aggregates all classes together. These results indicate that
the aggregated metrics are influenced by the Exception and Background classes. The vir‑
tual image dataset shows a low Precision value but a notably high Recall value. While the
Precision values for the real image dataset and the hybrid dataset do not exhibit a signifi‑
cant difference, a 7% improvement in Recall suggests that the integration of virtual images
leads to a notable enhancement in Recall.

Similarly, for the Crack class, the hybrid dataset displays the best results, highlighting
the impact of the virtual image on the recall value. This indicates that the images generated
in the virtual environment for the Crack class possess sufficient diversity to mirror real‑
world images, facilitating sophisticated pixel‑level labeling. In summary, the augmented
images generated by the virtual environment in this study can serve as training data and
are effective in improving the recall value. However, the reliability of datasets consisting
only of virtual images drops sharply due to the domain shift phenomenon.

The comparison in Group 2 involves three datasets: one with 253 real images mixed
with 800 virtual images, another with 800 augmented real images created by augmentation
of 253 real images, and a third with 1600 real images mixed with 800 virtual images.

Table 7 reveals that the dataset with only 800 real images outperforms the dataset with
253 real and 800 virtual images in mAP50(B), mAP50‑90(B), and F‑1 scores for all classes
combined. Table 7 reveals that the dataset with only 800 real images outperforms the
dataset with 253 real and 800 virtual images in mAP50(B), mAP50‑90(B), and F‑1 scores for
all classes combined. However, the results of mAP50(M) andmAP50‑90(M) were opposite.
Furthermore, the Confidence threshold of the 253 real and 800 virtual datasets was 0.698,
which is much higher than that of the real 800 dataset, which achieved 0.489. This suggests
that incorporating virtual images can provide enhanced diversity and quality over mere
augmentation, potentially leading to better model generalization and robustness. It im‑
plies that the integration of virtual images alongside real images not only compensates for

Buildings 2024, 14, 1929 25 of 31

the limitations seen with augmentation techniques but also enhances the dataset’s overall
effectiveness in diverse scenarios. When we look more closely at the metrics that evaluate
only the Tile class, the hybrid dataset performs well on all metrics. This result aligns with
the findings in Group 1. This is also evident in the Crack class, where the hybrid dataset
has a higher recall value, despite having a higher precision for the real image dataset.

The results across all classes demonstrate the highest values for the hybrid dataset of
800 real images and 800 virtual images. However, the Tile class does not exhibit better
performance compared to the hybrid dataset of 253 real images and 800 virtual images.
“Others” and “Background” classes have relatively high values, resulting in better overall
metric results. However, the precision and recall metrics for the “Tile” and “Crack” classes,
which are the focus of this experiment, exhibit lower values. This suggests that the detec‑
tion of tile objects is not significantly impacted by the proliferation of a small number of
real images. Figure 17 shows the comparison of the F‑1 score of all datasets when only Tile
and Crack classes are taken into account.

Buildings 2024, 14, 1929 26 of 32

hybrid dataset has a higher recall value, despite having a higher precision for the real
image dataset.

The results across all classes demonstrate the highest values for the hybrid dataset of
800 real images and 800 virtual images. However, the Tile class does not exhibit better
performance compared to the hybrid dataset of 253 real images and 800 virtual images.
“Others” and “Background” classes have relatively high values, resulting in better overall
metric results. However, the precision and recall metrics for the “Tile” and “Crack” clas-
ses, which are the focus of this experiment, exhibit lower values. This suggests that the
detection of tile objects is not significantly impacted by the proliferation of a small number
of real images. Figure 17 shows the comparison of the F-1 score of all datasets when only
Tile and Crack classes are taken into account.

Figure 17. F-1 scores considering Tile and Crack only on the whole dataset.

Furthermore, the authors identified additional considerations for data generation to
improve accuracy. In this study, the model’s tile joints were created in white and bright,
in accordance with the prevailing practices in new constructions. Upon analyzing the
model’s real image prediction result, it was observed that the tile joints in older buildings
often appear darker due to the effects of aging and exposure, which influenced the accu-
racy of our crack detection. This discrepancy highlights the importance of adapting virtual
models to include varied joint colors in order to better simulate real-world conditions.
Such adjustments are crucial for enhancing model robustness and applicability across di-
verse building conditions.

It is worth noting that in the test results, there were instances where tiles were de-
tected without cracks being defined as any class and appearing as empty areas. This sug-
gests that the learning rate for the Tile class was adequate whilst the learning rate for the
Crack class was inadequate. Furthermore, it is acknowledged that micro-cracks present a
challenge in their detection, particularly when visibility is reduced due to greater shooting
distances. Our study, therefore, emphasizes the need for enhanced image resolution and
criteria including a minimum shooting distance. Micro-cracks are often undetected due to
low clarity when images are captured from afar, which can significantly impact the
model’s ability to perform accurate defect detection. To address this, we suggest employ-
ing high-resolution cameras that can capture finer details more clearly. Furthermore, the
results of a series of experiments must be evaluated in order to ascertain the minimum
distance at which micro-cracks can be detected.

0.5554

0.2832

0.6114

0.5822

0.6234

0.6220

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000

Real 253

Virtual 253

Real 150 Virtual 150

Real 800

Real 253 Virtual 800

Real 800 Virtual 800

F-1 Score

Figure 17. F‑1 scores considering Tile and Crack only on the whole dataset.

Furthermore, the authors identified additional considerations for data generation to
improve accuracy. In this study, the model’s tile joints were created in white and bright,
in accordance with the prevailing practices in new constructions. Upon analyzing the
model’s real image prediction result, it was observed that the tile joints in older build‑
ings often appear darker due to the effects of aging and exposure, which influenced the
accuracy of our crack detection. This discrepancy highlights the importance of adapting
virtual models to include varied joint colors in order to better simulate real‑world con‑
ditions. Such adjustments are crucial for enhancing model robustness and applicability
across diverse building conditions.

It is worth noting that in the test results, there were instances where tiles were de‑
tected without cracks being defined as any class and appearing as empty areas. This sug‑
gests that the learning rate for the Tile class was adequate whilst the learning rate for the
Crack class was inadequate. Furthermore, it is acknowledged that micro‑cracks present a
challenge in their detection, particularly when visibility is reduced due to greater shoot‑
ing distances. Our study, therefore, emphasizes the need for enhanced image resolution
and criteria including a minimum shooting distance. Micro‑cracks are often undetected
due to low clarity when images are captured from afar, which can significantly impact the
model’s ability to perform accurate defect detection. To address this, we suggest employ‑
ing high‑resolution cameras that can capture finer details more clearly. Furthermore, the
results of a series of experiments must be evaluated in order to ascertain the minimum
distance at which micro‑cracks can be detected.

Buildings 2024, 14, 1929 26 of 31

6.2. Limitation
Despite the strengths and efficacy of this study, there are several limitations acknowl‑

edged. The most prominent limitation is domain shift, which occurs when models trained
solely on virtual images are tested on real images. This phenomenon prevents the exclu‑
sive use of virtual image datasets. To mitigate this, techniques such as GAN‑based style
transfer or domain adaptation can be employed to reduce the reality gap between virtual
and real images. Unlike conventional applications of style transfer, which aim to make
training data appear more realistic, the author is considering applying style transfer to test
images to make real images appear virtual.

This innovative approach has the potential to optimize the use of virtual images for
data augmentation, thereby improvingmodel generalization. Another concern is the time‑
consuming process of manually annotating real images at the pixel level, which took sev‑
eral hours to label the real images. Currently, there are several attempts to automatically
annotate images based on deep learning techniques. The most popular method is an auto‑
matic annotation system using unsupervised learning [99]. This method is based on clus‑
tering techniques to distinguish the characteristics of images and thus distinguish classes.
There have been various studies based on this method, but it is still difficult to apply [100].
Moreover, the application of unsupervised learning to objects that occur randomly rather
than in a regular pattern, such as cracks in tiles, is more challenging. Therefore, further
research is required to accomplish a fully automated image annotation system.

The automated labeling system was applied to virtual images, and a random selec‑
tion was manually reviewed. However, as the number of images and the sample size for
random checks grows, it becomes crucial to adopt an objective evaluation method. One
potential approach is to manually label sample images and then compare them with the
system’s output using Intersection over Union (IoU) metrics. Furthermore, the current
study’s emphasis on tile cracks restricts its wider applicability. The claim that the study
demonstrates effective methods for all types of defects based on only one subject is weak.

To bolster the validity of this study, the methodology should be expanded to encom‑
pass various types of defects. For instance, in order to gain further insight into the tile
defects, it would be beneficial to conduct experiments involving additional defects such as
those related to falling off and tilting. Furthermore, it would be advantageous to apply this
approach to defects in other trades in order to ensure broad applicability. Nonetheless, this
research marks a significant advancement in automated defect detection in construction.
It proposes a methodology that uses virtual image augmentation to improve model accu‑
racy. By addressing these limitations and exploring suggested enhancements, the study’s
methodology could be refined. This would contribute to the advancement of automated,
intelligent construction management systems and propel the field towards more accurate
and autonomous quality management in construction projects.

7. Conclusions
The construction industry is increasingly acknowledging the necessity of automated

detection models for identifying defects. However, to ensure the effectiveness of such
models, achieving high accuracy is crucial, which in turn demands a substantial and di‑
verse dataset. Yet, gathering such data directly from construction sites is exceedingly time‑
consuming and laborious, and maintaining its diversity and quality poses a significant
challenge. To address these obstacles, this study introduces a novel hybrid approach in‑
volving the creation of virtual 3Dmodels and the generation of virtual image data through
automated rendering and annotation systems. This methodology commences with the col‑
lection of basic field images, followed by the development of a hierarchical classification
system based on these images. This strategy guarantees data diversity, while the subse‑
quent establishment of an automated system enhances convenience and efficiency. More‑
over, through the utilization of segmentation and rendering mask images, this method
minimizes the labor required for labeling for segmentation purposes. The efficacy of the
virtual image data produced by this approach has been validated.

Buildings 2024, 14, 1929 27 of 31

When employing an equal number of images, the F‑1 score of the hybrid dataset,
which combined virtual and real images in a 1:1 ratio, exhibited a 4.4% increase at 0.4329
compared to the 0.4154 F‑1 score achieved solely using real images. This outcome substan‑
tiates the effectiveness of utilizing virtual image data and underscores the meaningfulness
of incorporating virtual data. Furthermore, the dataset formed by augmenting real im‑
ages yielded an F‑1 score of 0.4499, whereas the hybrid dataset, amalgamating augmented
real and virtual images, scored 0.4990 in the F‑1 score, marking a 10% enhancement. This
underscores that leveraging virtual image data significantly augments data and thereby
improves accuracy, establishing its efficacy akin to real data. These findings validate the
effectiveness of the proposedmethodology. However, when exclusively relying on virtual
image data, the F‑1 score was notably low. It is presumed that challenges in prediction
arose when there were disparities in shooting distances between virtual and real environ‑
ments. While virtual images are created with high resolution and clarity, enhancing the
distinction between defective and non‑defective areas, real‑world images often suffer from
variable sharpness due to random shooting distances. This can result in less detailed de‑
fect depiction, leading to decreased accuracy in predictions. To mitigate this, we suggest
the implementation of standardized shooting distances for real images, mirroring the con‑
ditions used for generating virtual images. Furthermore, adjusting the focus parameters
within the virtual environment to simulate real‑world imaging conditions could bridge the
gap in image quality and enhance the model’s predictive accuracy.

While the primary focus of this study was on tile cracks, the methodology holds rel‑
evance for addressing various types of defects across different construction contexts. By
crafting and modeling datasets specific to each defect type and suitable for the respective
work phase, a multitude of image data can be generated. This data can then be utilized to
advance the development of automated detection models for a range of defects that were
previously difficult to identify. Nonetheless, in instances where the complexity of certain
defects necessitates intricate modeling, further refinement will be necessary for future re‑
search efforts. While this study primarily focuses on improving tile crack detection from
a data perspective, it is clear that further advancements could also come from enhancing
the machine learning model itself. For more robust crack detection, future research might
consider refining the model’s architecture, optimizing loss functions, or tweaking train‑
ing parameters. Such modifications could tailor the model more precisely for recognizing
subtle differences in crack patterns, potentially leading to significant improvements in de‑
tection accuracy. Overall, this methodology has the potential to enhance the accuracy of
comprehensive defect management systems in the future.

Author Contributions: Conceptualization, S.‑M.C. and H.‑S.C.; methodology, S.‑M.C.; software, S.‑
M.C.; validation, S.‑M.C. and H.‑S.C.; formal analysis, S.‑M.C. and S.J.; investigation, S.‑M.C. and
S.J.; resources, H.‑S.C. and S.J.; data curation, S.‑M.C.; writing—original draft preparation, S.‑M.C.;
writing—review and editing, H.‑S.C.; visualization, S.‑M.C.; supervision, H.‑S.C.; project administra‑
tion, S.‑M.C.; funding acquisition, H.‑S.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Ajou University research fund (S2023G000100466) and
the research fund from AP 10 program (S2024G000100041).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset is available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

Buildings 2024, 14, 1929 28 of 31

References
1. Maksym, A. Business Strategy ParadigmShift: BuildingResilience in aDisrupted Economy after theCOVID‑19 Pandemic. Order

No. 29211349. Master’s Thesis, Webster University, Webster Groves, MO, USA, 2021. Available online: https://www.proquest.
com/dissertations‑theses/business‑strategy‑paradigm‑shift‑building/docview/2671699692/se‑2 (accessed on 20 June 2024).

2. Luo, H.; Xiong, C.; Fang, W.; Love, P.E.D.; Zhang, B.; Ouyang, X. Convolutional neural networks: Computer vision‑based
workforce activity assessment in construction. Autom. Constr. 2018, 94, 282–289. [CrossRef]

3. Yang, J.; Shi, Z.; Wu, Z. Vision‑based action recognition of construction workers using dense trajectories. Adv. Eng. Inform. 2016,
30, 327–336. [CrossRef]

4. Barbosa, F.; Woetzel, J.; Mischke, J.; Ribeirinho, M.J.; Sridhar, M.; Parsons, M.; Bertram, N.; Brown, S. Reinventing Construc‑
tion Through a Productivity Revolution. 2017. Available online: https://www.mckinsey.com/industries/capital‑projects‑and‑
infrastructure/our‑insights/reinventing‑construction‑through‑a‑productivity‑revolution (accessed on 20 June 2024).

5. Ilyas, M.; Khaw, H.Y.; Selvaraj, N.M.; Jin, Y.; Zhao, X.; Cheah, C.C. Robot‑AssistedObject Detection for ConstructionAutomation:
Data and Information‑Driven Approach. IEEE/ASME Trans. Mechatron. 2021, 26, 2845–2856. [CrossRef]

6. Busta, H. KPMG Report: Construction Industry Slow to Adopt New Technology. 14 September 2016. Available online: https://
www.constructiondive.com/news/kpmg‑report‑construction‑industry‑slow‑to‑adopt‑new‑technology/426268/ (accessed on 20
June 2024).

7. Manyika, J.; Ramaswamy, S.; Khanna, S.; Sarrazin, H.; Pinkus, G.; Sethupathy, G.; Yaffe, A.; Digital America: A Tale of the
Haves and Have‑Mores. McKinsey Global Institute 2015, pp. 1–120. Available online: https://www.mckinsey.com/industries/
technology‑media‑and‑telecommunications/our‑insights/digital‑america‑a‑tale‑of‑the‑haves‑and‑have‑mores (accessed on 20
June 2024).

8. Construction Workers Mutual Aid Association. Monthly Statistics: Construction Progress Payment and Construction Workforce In‑
sights Report (December 2023); Construction Workers Mutual Aid Association: Seoul, Republic of Korea, 2023.

9. Sungjin, K.; Soowon, C. Castro‑Lacouture Daniel Dynamic Modeling for Analyzing Impacts of Skilled Labor Shortage on Con‑
struction Project Management. J. Manag. Eng. 2020, 36, 04019035. [CrossRef]

10. Alomari, O.M. Identification and categorization of building defects. Civ. Eng. Archit. 2022, 10, 438–446. [CrossRef]
11. Abou Shaar, B. Adaptable Three Dimensional System for Building Inspection Management. Master’s Thesis, University of Wa‑

terloo, Waterloo, ON, Canada, 2012. Available online: http://hdl.handle.net/10012/6923 (accessed on 20 June 2024).
12. Zhou, Y.; Ji, A.; Zhang, L. Sewer defect detection from 3D point clouds using a transformer‑based deep learning model. Autom.

Constr. 2022, 136, 104163. [CrossRef]
13. Perez, H.; Tah, J.H. Deep learning smartphone application for real‑time detection of defects in buildings. Sensors 2021, 28, e2751.

[CrossRef]
14. Choi, M.; Kim, S.; Kim, S. Semi‑automated visualization method for visual inspection of buildings on BIM using 3D point cloud.

J. Build. Eng. 2024, 81, 108017. [CrossRef]
15. Xu, Y.; Li, D.; Xie, Q.; Wu, Q.; Wang, J. Automatic defect detection and segmentation of tunnel surface using modified Mask

R‑CNN.Measurement 2021, 178, 109316. [CrossRef]
16. Luo, H.; Lin, L.; Chen, K.; Antwi‑Afari, M.F.; Chen, L. Digital technology for quality management in construction: A review and

future research directions. Dev. Built Environ. 2022, 12, 100087. [CrossRef]
17. Kim, H.; Liu, X.; Ahn, E.; Shin, M.; Shin, S.W.; Sim, S. Performance assessment method for crack repair in concrete using PZT‑

based electromechanical impedance technique. NDT E Int. 2019, 104, 90–97. [CrossRef]
18. Liu, Y.F.; Cho, S.; Spencer, B.F., Jr.; Fan, J.S. Concrete Crack Assessment Using Digital Image Processing and 3D Scene Recon‑

struction. J. Comput. Civ. Eng. 2016, 30, 04014124. [CrossRef]
19. Gao, Y.; Mosalam, K.M. PEER Hub ImageNet: A large‑scale multiattribute benchmark data set of structural images. J. Struct.

Eng. 2020, 146, 04020198. [CrossRef]
20. Mostafa, K.; Hegazy, T. Review of image‑based analysis and applications in construction. Autom. Constr. 2021, 122, 103516.

[CrossRef]
21. Han, K.K.; Golparvar‑Fard, M. Potential of big visual data and building information modeling for construction performance

analytics: An exploratory study. Autom. Constr. 2017, 73, 184–198. [CrossRef]
22. Paneru, S.; Jeelani, I. Computer vision applications in construction: Current state, opportunities & challenges. Autom. Constr.

2021, 132, 103940. [CrossRef]
23. Fang,W.; Ding, L.; Love, P.E.D.; Luo, H.; Li, H.; Peña‑Mora, F.; Zhong, B.; Zhou, C. Computer vision applications in construction

safety assurance. Autom. Constr. 2020, 110, 103013. [CrossRef]
24. Wang, T.; Gan, V.J.L. Automated joint 3D reconstruction and visual inspection for buildings using computer vision and transfer

learning. Autom. Constr. 2023, 149, 104810. [CrossRef]
25. Perez, H.; Tah, J.H.; Mosavi, A. Deep learning for detecting building defects using convolutional neural networks. Sensors 2019,

19, 3556. [CrossRef]
26. Xu, S.; Wang, J.; Wang, X.; Shou, W. Computer vision techniques in construction, operation and maintenance phases of civil

assets: A critical review, ISARC. In Proceedings of the International Symposium on Automation and Robotics in Construction,
Banff, AB, Canada, 21–24 May 2019; IAARC Publications: Cambridge, UK, 2019; pp. 672–679. [CrossRef]

https://www.proquest.com/dissertations-theses/business-strategy-paradigm-shift-building/docview/2671699692/se-2
https://www.proquest.com/dissertations-theses/business-strategy-paradigm-shift-building/docview/2671699692/se-2
https://doi.org/10.1016/j.autcon.2018.06.007
https://doi.org/10.1016/j.aei.2016.04.009
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/reinventing-construction-through-a-productivity-revolution
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/reinventing-construction-through-a-productivity-revolution
https://doi.org/10.1109/TMECH.2021.3100306
https://www.constructiondive.com/news/kpmg-report-construction-industry-slow-to-adopt-new-technology/426268/
https://www.constructiondive.com/news/kpmg-report-construction-industry-slow-to-adopt-new-technology/426268/
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/digital-america-a-tale-of-the-haves-and-have-mores
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/digital-america-a-tale-of-the-haves-and-have-mores
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000720
https://doi.org/10.13189/cea.2022.100204
http://hdl.handle.net/10012/6923
https://doi.org/10.1016/j.autcon.2022.104163
https://doi.org/10.1002/stc.2751
https://doi.org/10.1016/j.jobe.2023.108017
https://doi.org/10.1016/j.measurement.2021.109316
https://doi.org/10.1016/j.dibe.2022.100087
https://doi.org/10.1016/j.ndteint.2019.04.004
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000446
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002745
https://doi.org/10.1016/j.autcon.2020.103516
https://doi.org/10.1016/j.autcon.2016.11.004
https://doi.org/10.1016/j.autcon.2021.103940
https://doi.org/10.1016/j.autcon.2019.103013
https://doi.org/10.1016/j.autcon.2023.104810
https://doi.org/10.3390/s19163556
https://doi.org/10.22260/ISARC2019/0090

Buildings 2024, 14, 1929 29 of 31

27. Xu, S.; Wang, J.; Shou, W.; Ngo, T.; Sadick, A.; Wang, X. Computer vision techniques in construction: A critical review. Arch.
Comput. Methods Eng. 2021, 28, 3383–3397. [CrossRef]

28. Chai, Y.T.; Wang, T. Evaluation and decision‑making framework for concrete surface quality based on computer vision and
ontology. Eng. Constr. Archit. Manag. 2022, 30, 4881–4913. [CrossRef]

29. Spencer, B.F., Jr.; Hoskere, V.; Narazaki, Y. Advances in computer vision‑based civil infrastructure inspection and monitoring.
Engineering 2019, 5, 199–222. [CrossRef]

30. Fang, W.; Love, P.E.D.; Luo, H.; Ding, L. Computer vision for behaviour‑based safety in construction: A review and future
directions. Adv. Eng. Inform. 2020, 43, 100980. [CrossRef]

31. Hamdan, A.; Taraben, J.; Helmrich, M.; Mansperger, T.; Morgenthal, G.; Scherer, R.J. A semantic modeling approach for the
automated detection and interpretation of structural damage. Autom. Constr. 2021, 128, 103739. [CrossRef]

32. Gao, Y.; Kong, B.; Mosalam, K.M. Deep leaf‑bootstrapping generative adversarial network for structural image data aug‑
mentation. Comput.‑Aided Civ. Infrastruct. Eng. 2019, 34, 755–773. [CrossRef]

33. D’Addario, J. New Survey Finds British Businesses Are Reluctant to Proactively Share Data. 2020, Open Data Institute, 29.
Available online: https://theodi.org/article/new‑survey‑finds‑just‑27‑of‑british‑businesses‑are‑sharing‑data/ (accessed on 20
June 2024).

34. Amarù, S.; Marelli, D.; Ciocca, G.; Schettini, R. DALib: A Curated Repository of Libraries for Data Augmentation in Computer
Vision. J. Imaging 2023, 9, 232. [CrossRef] [PubMed]

35. Frid‑Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic data augmentation using GAN for improved
liver lesion classification. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
Washington, DC, USA, 4–7 April 2018; pp. 289–293. [CrossRef]

36. Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An
overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [CrossRef]

37. Wu, A.N.; Stouffs, R.; Biljecki, F. Generative Adversarial Networks in the built environment: A comprehensive review of the
application of GANs across data types and scales. Build. Environ. 2022, 223, 109477. [CrossRef]

38. Kim, D.H.; Lee, D.; Lee, H.J.; Min, Y.G.; Park, I.; Cho, H. Analysis of importance by defect type in apartment con‑struction. J.
Korea Inst. Build. Constr. 2020, 20, 357–365. [CrossRef]

39. Lu, Q.; Lin, J.; Luo, L.; Zhang, Y.; Zhu, W. A supervised approach for automated surface defect detection in ceramic tile quality
control. Adv. Eng. Inform. 2022, 53, 101692. [CrossRef]

40. Huynh, N.T. An approach for classifying ceramic tile defects based on a two‑dimensional Genetic CNN algorithm. Neural
Comput. Appl. 2024, 36, 385–397. [CrossRef]

41. Li, Y.; Fang, J. Detection of SurfaceDefects ofMagnetic Tiles Based on ImprovedYOLOv5. J. Sens. 2023, 2023, 2466107. [CrossRef]
42. Wang, H.; Jin, P.; Wang, J.; Wu, J.; Li, D.; Cheng, H. Research on Ceramic Tile Defect Detection Based on Enhanced YOLOv5. In

Proceedings of the 2023 International Conference on the Cognitive Computing and Complex Data (ICCD), Huaian, China, 21–22
October 2023; pp. 78–83. [CrossRef]

43. Kovilpillai, J.J.A.; Jayanthy, S. An optimized deep learning approach to detect and classify defective tiles in production line for
efficient industrial quality control. Neural Comput. Appl. 2023, 35, 11089–11108. [CrossRef]

44. Cao, X.; Yao, B.; Chen, B.; Wang, Y. Multi‑defect detection for magnetic tile based on SE‑U‑Net. In Proceedings of the 2020
IEEE International Symposium on Product Compliance Engineering‑Asia (ISPCE‑CN), Chongqing, China, 6–8 November 2020;
pp. 1–6. [CrossRef]

45. Sioma, A. Automated control of surface defects on ceramic tiles using 3D image analysis. Materials 2020, 13, 1250. [CrossRef]
46. Cao, X.; Chen, B.; He, W. Unsupervised Defect Segmentation of Magnetic Tile Based on Attention Enhanced Flexible U‑Net.

IEEE Trans. Instrum. Meas. 2022, 71, 5011110. [CrossRef]
47. Liu, T.; He, Z.; Lin, Z.; Cao, G.Z.; Su, W.; Xie, S. An adaptive image segmentation network for surface defect detection. IEEE

Trans. Neural Netw. Learn. Syst. 2022, 35, 8510–8523. [CrossRef] [PubMed]
48. Cao, T.; Song, K.; Xu, L.; Feng, H.; Yan, Y.; Guo, J. Balanced multi‑scale target score network for ceramic tile surface defect

detection. Measurement 2024, 224, 113914. [CrossRef]
49. Stephen, O.; Maduh, U.J.; Sain, M. A machine learning method for detection of surface defects on ceramic tiles using convolu‑

tional neural networks. Electronics 2021, 11, 55. [CrossRef]
50. Wan, G.; Fang, H.; Wang, D.; Yan, J.; Xie, B. Ceramic tile surface defect detection based on deep learning. Ceram. Int. 2022, 48,

11085–11093. [CrossRef]
51. Zhu, Z.; Zhu, P.; Zeng, J.; Qian, X. A Surface Fatal Defect Detection Method for Magnetic Tiles based on Semantic Segmenta‑

tion and Object Detection: IEEE ITAIC (ISSN: 2693‑2865). In Proceedings of the 2022 IEEE 10th Joint International Information
Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 17–19 June 2022; pp. 2580–2586. [CrossRef]

52. Dong, G.; Sun, S.; Wu, N.; Chen, X.; Huang, P.; Wang, Z. A rapid detection method for the surface defects of mosaic ceramic tiles.
Ceram. Int. 2022, 48, 15462–15469. [CrossRef]

53. Zhu, H.; Hwang, B.G.; Ngo, J.; Tan, J.P.S. Applications of smart technologies in construction project management. J. Constr. Eng.
Manag. 2022, 148, 04022010. [CrossRef]

54. Lu, Y.; Duanmu, L.; Zhai, Z.J.; Wang, Z. Application and improvement of Canny edge‑detection algorithm for exterior wall
hollowing detection using infrared thermal images. Energy Build. 2022, 274, 112421. [CrossRef]

https://doi.org/10.1007/s11831-020-09504-3
https://doi.org/10.1108/ECAM-01-2022-0064
https://doi.org/10.1016/j.eng.2018.11.030
https://doi.org/10.1016/j.aei.2019.100980
https://doi.org/10.1016/j.autcon.2021.103739
https://doi.org/10.1111/mice.12458
https://theodi.org/article/new-survey-finds-just-27-of-british-businesses-are-sharing-data/
https://doi.org/10.3390/jimaging9100232
https://www.ncbi.nlm.nih.gov/pubmed/37888340
https://doi.org/10.1109/ISBI.2018.8363576
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1016/j.buildenv.2022.109477
https://doi.org/10.5345/JKIBC.2020.20.4.357
https://doi.org/10.1016/j.aei.2022.101692
https://doi.org/10.1007/s00521-023-09012-y
https://doi.org/10.1155/2023/2466107
https://doi.org/10.1109/ICCD59681.2023.10420749
https://doi.org/10.1007/s00521-023-08283-9
https://doi.org/10.1109/ISPCE-CN51288.2020.9321855
https://doi.org/10.3390/ma13051250
https://doi.org/10.1109/TIM.2022.3170989
https://doi.org/10.1109/TNNLS.2022.3230426
https://www.ncbi.nlm.nih.gov/pubmed/37015643
https://doi.org/10.1016/j.measurement.2023.113914
https://doi.org/10.3390/electronics11010055
https://doi.org/10.1016/j.ceramint.2021.12.328
https://doi.org/10.1109/ITAIC54216.2022.9836478
https://doi.org/10.1016/j.ceramint.2022.02.080
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002260
https://doi.org/10.1016/j.enbuild.2022.112421

Buildings 2024, 14, 1929 30 of 31

55. Luo, Q.; Gao, B.; Woo, W.L.; Yang, Y. Temporal and spatial deep learning network for infrared thermal defect detection. NDT E
Int. 2019, 108, 102164. [CrossRef]

56. Ichi, E.; Dorafshan, S. Effectiveness of infrared thermography for delamination detection in reinforced concrete bridge decks.
Autom. Constr. 2022, 142, 104523. [CrossRef]

57. Chen, C.; Xiao, B.; Zhang, Y.; Zhu, Z. Automatic vision‑based calculation of excavator earthmoving productivity using ze‑ro‑shot
learning activity recognition. Autom. Constr. 2023, 146, 104702. [CrossRef]

58. Lee, K.; Hong, G.; Sael, L.; Lee, S.; Kim, H.Y. MultiDefectNet: Multi‑class defect detection of building façade based on deep
convolutional neural network. Sustainability 2020, 12, 9785. [CrossRef]

59. Dais, D.; Bal, I.E.; Smyrou, E.; Sarhosis, V. Automatic crack classification and segmentation on masonry surfaces using con‑
volutional neural networks and transfer learning. Autom. Constr. 2021, 125, 103606. [CrossRef]

60. Wang, Y.; Han, Y.; Wang, C.; Song, S.; Tian, Q.; Huang, G. Computation‑efficient deep learning for computer vision: A survey.
In Cybernetics and Intelligence; IEEE: Piscataway, NJ, USA, 2024. [CrossRef]

61. Høye, T.T.; Ärje, J.; Bjerge, K.; Hansen, O.L.; Iosifidis, A.; Leese, F.; Mann, H.M.; Meissner, K.; Melvad, C.; Raitoharju, J. Deep
learning and computer vision will transform entomology. Proc. Natl. Acad. Sci. USA 2021, 118, e2002545117. [CrossRef]

62. Brunetti, A.; Buongiorno, D.; Trotta, G.F.; Bevilacqua, V. Computer vision and deep learning techniques for pedestrian de‑tection
and tracking: A survey. Neurocomputing 2018, 300, 17–33. [CrossRef]

63. Bao, Y.; Tang, Z.; Li, H.; Zhang, Y. Computer vision and deep learning–based data anomaly detection method for structural
health monitoring. Struct. Health Monit. 2019, 18, 401–421. [CrossRef]

64. Halevy, A.; Norvig, P.; Pereira, F. The unreasonable effectiveness of data. IEEE Intell. Syst. 2009, 24, 8–12. [CrossRef]
65. Arora, N. Image Augmentation Using Generative Adversarial Networks. CASS Stud. 2020, 4, 2.
66. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
67. Shamsolmoali, P.; Zareapoor, M.; Granger, E.; Zhou, H.; Wang, R.; Celebi, M.E.; Yang, J. Image synthesis with adversarial

networks: A comprehensive survey and case studies. Inf. Fusion 2021, 72, 126–146. [CrossRef]
68. Alqahtani, H.; Kavakli‑Thorne, M.; Kumar, G. Applications of generative adversarial networks (gans): An updated review. Arch.

Comput. Methods Eng. 2021, 28, 525–552. [CrossRef]
69. deMelo, C.M.; Torralba, A.; Guibas, L.; DiCarlo, J.; Chellappa, R.; Hodgins, J. Next‑generation deep learning based on simulators

and synthetic data. Trends Cogn. Sci. 2022, 26, 174–187. [CrossRef]
70. Qin, Z.; Liu, Z.; Zhu, P.; Xue, Y. A GAN‑based image synthesis method for skin lesion classification. Comput. Methods Programs

Biomed. 2020, 195, 105568. [CrossRef]
71. Sandfort, V.; Yan, K.; Pickhardt, P.J.; Summers, R.M. Data augmentation using generative adversarial networks (CycleGAN) to

improve generalizability in CT segmentation tasks. Sci. Rep. 2019, 9, 16884. [CrossRef]
72. Lei, Y.; Harms, J.; Wang, T.; Liu, Y.; Shu, H.; Jani, A.B.; Curran, W.J.; Mao, H.; Liu, T.; Yang, X. MRI‑only based synthetic CT

generation using dense cycle consistent generative adversarial networks. Med. Phys. 2019, 46, 3565–3581. [CrossRef]
73. Lu, Y.; Chen, D.; Olaniyi, E.; Huang, Y. Generative adversarial networks (GANs) for image augmentation in agriculture: A

systematic review. Comput. Electron. Agric. 2022, 200, 107208. [CrossRef]
74. Dewi, C.; Chen, R.; Liu, Y.; Tai, S. Synthetic Data generation using DCGAN for improved traffic sign recognition. Neural Comput.

Appl. 2022, 34, 21465–21480. [CrossRef]
75. Li, S.; Zhao, X. High‑resolution concrete damage image synthesis using conditional generative adversarial network. Autom.

Constr. 2023, 147, 104739. [CrossRef]
76. Bang, S.; Baek, F.; Park, S.; Kim, W.; Kim, H. Image augmentation to improve construction resource detection using generative

adversarial networks, cut‑and‑paste, and image transformation techniques. Autom. Constr. 2020, 115, 103198. [CrossRef]
77. Goodfellow, T.S.; Zaremba, W.; Ian, V.C. Improved techniques for training gans. Adv. Neural Inf. Process. Syst. 2016. [CrossRef]
78. Soltani, M.M.; Zhu, Z.; Hammad, A. Automated annotation for visual recognition of construction resources using synthetic

images. Autom. Constr. 2016, 62, 14–23. [CrossRef]
79. Hwang, J.; Kim, J.; Chi, S. Site‑optimized training image database development using web‑crawled and synthetic images. Autom.

Constr. 2023, 151, 104886. [CrossRef]
80. Kim, J.; Kim, D.; Lee, S.; Chi, S. Hybrid DNN training using both synthetic and real construction images to overcome training

data shortage. Autom. Constr. 2023, 149, 104771. [CrossRef]
81. Lee, H.; Jeon, J.; Lee, D.; Park, C.; Kim, J.; Lee, D. Game engine‑driven synthetic data generation for computer vision‑based safety

monitoring of construction workers. Autom. Constr. 2023, 155, 105060. [CrossRef]
82. Barrera‑Animas, A.Y.; Delgado, J.M.D. Generating real‑world‑like labelled synthetic datasets for construction site applications.

Autom. Constr. 2023, 151, 104850. [CrossRef]
83. Assadzadeh, A.; Arashpour, M.; Brilakis, I.; Ngo, T.; Konstantinou, E. Vision‑based excavator pose estimation using syn‑

thetically generated datasets with domain randomization. Autom. Constr. 2022, 134, 104089. [CrossRef]
84. Roberts, M.; Ramapuram, J.; Ranjan, A.; Kumar, A.; Bautista, M.A.; Paczan, N.; Webb, R.; Susskind, J.M. Hypersim: A photo‑

realistic synthetic dataset for holistic indoor scene understanding. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10912–10922. [CrossRef]

85. Schieber, H.; Demir, K.C.; Kleinbeck, C.; Yang, S.H.; Roth, D. Indoor synthetic data generation: A systematic review. Comput.
Vis. Image Underst. 2024, 2024, 103907. [CrossRef]

https://doi.org/10.1016/j.ndteint.2019.102164
https://doi.org/10.1016/j.autcon.2022.104523
https://doi.org/10.1016/j.autcon.2022.104702
https://doi.org/10.3390/su12229785
https://doi.org/10.1016/j.autcon.2021.103606
https://doi.org/10.26599/CAI.2024.9390002
https://doi.org/10.1073/pnas.2002545117
https://doi.org/10.1016/j.neucom.2018.01.092
https://doi.org/10.1177/1475921718757405
https://doi.org/10.1109/MIS.2009.36
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1016/j.inffus.2021.02.014
https://doi.org/10.1007/s11831-019-09388-y
https://doi.org/10.1016/j.tics.2021.11.008
https://doi.org/10.1016/j.cmpb.2020.105568
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1002/mp.13617
https://doi.org/10.1016/j.compag.2022.107208
https://doi.org/10.1007/s00521-021-05982-z
https://doi.org/10.1016/j.autcon.2022.104739
https://doi.org/10.1016/j.autcon.2020.103198
https://doi.org/10.48550/arXiv.1606.03498
https://doi.org/10.1016/j.autcon.2015.10.002
https://doi.org/10.1016/j.autcon.2023.104886
https://doi.org/10.1016/j.autcon.2023.104771
https://doi.org/10.1016/j.autcon.2023.105060
https://doi.org/10.1016/j.autcon.2023.104850
https://doi.org/10.1016/j.autcon.2021.104089
https://doi.org/10.48550/arXiv.2011.02523
https://doi.org/10.1016/j.cviu.2023.103907

Buildings 2024, 14, 1929 31 of 31

86. Ying, H.; Sacks, R.; Degani, A. Synthetic image data generation using BIM and computer graphics for building scene under‑
standing. Autom. Constr. 2023, 154, 105016. [CrossRef]

87. Hong, Y.; Park, S.; Kim, H.; Kim, H. Synthetic data generation using building information models. Autom. Constr. 2021, 130,
103871. [CrossRef]

88. Rampini, L.; Re Cecconi, F. Synthetic images generation for semantic understanding in facility management. Constr. Innov. 2024,
24, 33–48. [CrossRef]

89. Neuhausen, M.; Herbers, P.; König, M. Using synthetic data to improve and evaluate the tracking performance of construction
workers on site. Appl. Sci. 2020, 10, 4948. [CrossRef]

90. Mailhe, C.; Ammar, A.; Chinesta, F. On the use of synthetic images in deep learning for defect recognition in industrial infras‑
tructures. In Proceedings of the 2023 6th International Conference onMachine Vision and Applications, Singapore, 10–12March
2023; pp. 81–87. [CrossRef]

91. Siu, C.; Wang, M.; Cheng, J.C. A framework for synthetic image generation and augmentation for improving automatic sewer
pipe defect detection. Autom. Constr. 2022, 137, 104213. [CrossRef]

92. Qiu, S.; Cai, B.; Wang, W.; Wang, J.; Zaheer, Q.; Liu, X.; Hu, W.; Peng, J. Automated detection of railway defective fasteners based
on YOLOv8‑FAM and synthetic data using style transfer. Autom. Constr. 2024, 162, 105363. [CrossRef]

93. Bai, R.; Wang, M.; Zhang, Z.; Lu, J.; Shen, F. Automated Construction Site Monitoring Based on Improved YOLOv8‑Seg Instance
Segmentation Algorithm. IEEE Access 2023, 11, 139082–139096. [CrossRef]

94. Yang, T.; Zhou, S.; Xu, A.; Ye, J.; Yin, J. An approach for plant leaf image segmentation based on YOLOV8 and the improved
DEEPLABV3. Plants 2023, 12, 3438. [CrossRef]

95. Wang, G.; Chen, Y.; An, P.; Hong, H.; Hu, J.; Huang, T. UAV‑YOLOv8: A small‑object‑detection model based on improved
YOLOv8 for UAV aerial photography scenarios. Sensor 2023, 23, 7190. [CrossRef]

96. Yang, G.; Wang, J.; Nie, Z.; Yang, H.; Yu, S. A lightweight YOLOv8 tomato detection algorithm combining feature enhancement
and attention. Agronomy 2023, 13, 1824. [CrossRef]

97. Wang, X.; Gao, H.; Jia, Z.; Li, Z. BL‑YOLOv8: An improved road defect detection model based on YOLOv8. Sensor 2023, 23, 8361.
[CrossRef]

98. Powers, D.M. Evaluation: From precision, recall and F‑measure to ROC, informedness, markedness and correlation. arXiv 2020,
arXiv:2010.16061. [CrossRef]

99. Novozámský, A.; Vit, D.; Šroubek, F.; Franc, J.; Krbálek, M.; Bílkova, Z.; Zitová, B. Automated Object Labeling For Cnn‑Based
Image Segmentation. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United
Arab Emirates, 25–28 October 2020; pp. 2036–2040. [CrossRef]

100. Adnan, M.M.; Rahim, M.S.M.; Rehman, A.; Mehmood, Z.; Saba, T.; Naqvi, R.A. Automatic Image Annotation Based on Deep
Learning Models: A Systematic Review and Future Challenges. IEEE Access 2021, 9, 50253–50264. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.autcon.2023.105016
https://doi.org/10.1016/j.autcon.2021.103871
https://doi.org/10.1108/CI-09-2022-0232
https://doi.org/10.3390/app10144948
https://doi.org/10.1145/3589572.3589584
https://doi.org/10.1016/j.autcon.2022.104213
https://doi.org/10.1016/j.autcon.2024.105363
https://doi.org/10.1109/ACCESS.2023.3340895
https://doi.org/10.3390/plants12193438
https://doi.org/10.3390/s23167190
https://doi.org/10.3390/agronomy13071824
https://doi.org/10.3390/s23208361
https://doi.org/10.48550/arXiv.2010.16061
https://doi.org/10.1109/ICIP40778.2020.9191320
https://doi.org/10.1109/ACCESS.2021.3068897

	Introduction
	Backgrounds
	Scope and Flow of the Study
	Scope of the Study
	Research Flowchart

	Literature Review
	Research on Defect Detection
	Research on Training with Synthetic Image Data
	Synthetic Image Generated by GAN
	Virtual Image Generated by Virtual Environments

	Knowledge Gap and Research Objective
	Methodology
	Research Framework
	Real Image Collection
	Defect Type Analysis Phase
	Creation of a Virtual Environment
	Creation of Virtual 3D Models
	Creation of Virtual Defect Assets
	Creation of Defect Models

	Building an Automatic Rendering System
	Creating Segmentation Annotations

	Results
	Model for Training—YOLOv8
	Model Performance Evaluation Method
	Dataset Creation for Comparative Validation
	Learning Results
	Results of Dataset Group 1
	Results of Dataset Group 2

	Discussion and Limitations
	Discussion
	Limitation

	Conclusions
	References

