
Citation: Jung, I.-S.; Song, Y.-R.; Jilcha,

L.A.; Kim, D.-H.; Im, S.-Y.; Shim,

S.-W.; Kim, Y.-H.; Kwak, J. Enhanced

Encrypted Traffic Analysis Leveraging

Graph Neural Networks and

Optimized Feature Dimensionality

Reduction. Symmetry 2024, 16, 733.

https://doi.org/10.3390/sym16060733

Academic Editor: Tomohiro Inagaki

Received: 21 May 2024

Revised: 6 June 2024

Accepted: 7 June 2024

Published: 12 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Enhanced Encrypted Traffic Analysis Leveraging Graph Neural
Networks and Optimized Feature Dimensionality Reduction
In-Su Jung 1 , Yu-Rae Song 1 , Lelisa Adeba Jilcha 2 , Deuk-Hun Kim 3 , Sun-Young Im 4 , Shin-Woo Shim 4 ,
Young-Hwan Kim 4 and Jin Kwak 5,*

1 ISAA Lab., Department of Cyber Security, Ajou University, Suwon 16499, Republic of Korea;
jis0727@ajou.ac.kr (I.-S.J.); clara701@ajou.ac.kr (Y.-R.S.)

2 ISAA Lab., Department of AI Convergence Network, Ajou University, Suwon 16499, Republic of Korea;
jilchalelisa@ajou.ac.kr

3 ISAA Lab., Institute for Computing and Informatics Research, Ajou University, Suwon 16499,
Republic of Korea; kimdh1206@ajou.ac.kr

4 LIG Nex1, Seongnam 13488, Republic of Korea; sunyoung.im@lignex1.com (S.-Y.I.);
shimshinwoo@lignex1.com (S.-W.S.); younghwan.kim@lignex1.com (Y.-H.K.)

5 Department of Cyber Security, Ajou University, Suwon 16499, Republic of Korea
* Correspondence: security@ajou.ac.kr

Abstract: With the continuously growing requirement for encryption in network environments, web
browsers are increasingly employing hypertext transfer protocol security. Despite the increase in
encrypted malicious network traffic, the encryption itself limits the data accessible for analyzing such
behavior. To mitigate this, several studies have examined encrypted network traffic by analyzing
metadata and payload bytes. Recent studies have furthered this approach, utilizing graph neural
networks to analyze the structural data patterns within malicious encrypted traffic. This study
proposed an enhanced encrypted traffic analysis leveraging graph neural networks which can model
the symmetric or asymmetric spatial relations between nodes in the traffic network and optimized
feature dimensionality reduction. It classified malicious network traffic by leveraging key features,
including the IP address, port, CipherSuite, MessageLen, and JA3 features within the transport-layer-
security session data, and then analyzed the correlation between normal and malicious network
traffic data. The proposed approach outperformed previous models in terms of efficiency, using
fewer features while maintaining a high accuracy rate of 99.5%. This demonstrates its research value
as it can classify malicious network traffic with a high accuracy based on fewer features.

Keywords: encrypted traffic analysis (ETA); graph neural network (GNN); GraphSAGE; network
traffic classification; metadata; optimized feature dimensionality reduction

1. Introduction

With the increased utilization of the Internet, large volumes of sensitive information
are being transmitted and received through networks. To protect sensitive information,
there has been an increased demand for network encryption during data exchange over
networks, and the hypertext transfer protocol secure (HTTPS) has been used for encryption.
HTTPS protects communication and data transfer between a web browser of the user
and a website using transport layer security (TLS) or a secure socket layer (SSL) [1]. By
encrypting all exchanges among web servers, the protocol provides security to users.
As of June 2023, approximately 97% and 94% of the websites were using HTTPS on the
Chrome and Firefox browsers, respectively. Furthermore, the use of HTTPS within widely
used browsers is increasing annually [2,3]. However, the number of instances wherein
HTTPS-based network data encryption techniques are used to protect sensitive data within
network communications has increased. Encrypted malicious network traffic can perform
malicious activities, such as introducing malware into the target or inserting files containing
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malicious code [4,5]. In contrast to traditional nonencrypted malicious network traffic,
malicious encrypted network traffic requires a decryption process for detailed analysis.
This is because malicious activity is contained within encrypted TLS session data. Moreover,
there are certain limitations in the detection of malicious activities through existing network
traffic analysis techniques.

Therefore, current research is focusing on encrypted traffic analysis (ETA) techniques
using metadata or payload bytes of encrypted network traffic for efficient analysis. Se-
curity technologies based on machine learning (ML) and deep learning (DL) techniques
are also being studied for detection automation and intelligence [6–23]. This involves
the efficient selection of features that can be used for analyzing and classifying malicious
network traffic and applying an ML architecture optimized for encrypted network traffic
analysis [24,25]. This study proposed an enhanced encrypted traffic analysis leveraging
graph neural networks and optimized feature dimensionality reduction that can classify
malicious encrypted network traffic by analyzing features that are usable, selecting the
primary features, and using the minimum combination of features as a basis. The proposed
architecture comprised the GraphSAGE and prediction models. To focus on analyzing
encrypted network traffic, only TLS session data within encrypted normal/malicious net-
work traffic were extracted for learning. The architecture utilized features only from the
TLSClientHello packet. Furthermore, the GraphSAGE model comprising the proposed
architecture facilitated the analysis of complex correlations among data, such as network
traffic, and classified malicious network traffic using a prediction model built on two layers.
Compared with the number of features used in existing GNN-based ETA studies, the
proposed architecture classifies malicious network traffic using fewer features, achieving
a classification accuracy of 99.5% by analyzing an ideal combination of features, includ-
ing IP address, port, CipherSuite, MessageLen, and JA3. It achieves higher classification
accuracy with fewer features than earlier ETA-based algorithms using the GNN architec-
ture, and precision, recall, and F1-score were used to demonstrate the superiority of the
proposed architecture.

The contributions of this study related to encrypted network traffic analysis are sum-
marized as follows:

• The metadata used for encrypted network traffic classification and the ideal com-
bination of usable features within the metadata, particularly the TLS session data,
were analyzed.

• A classification architecture capable of classifying encrypted normal/malicious net-
work traffic using fewer features than existing GNN-based ETA algorithms was proposed.

• The accuracy, precision, recall, and F1-score for each feature combination were ana-
lyzed to derive an ideal combination of features, demonstrating the enhanced capabil-
ity of classifying malicious network traffic with fewer features based on the proposed
feature combination.

The remainder of this paper is organized as follows. Section 2 describes the related
work related to the design of the proposed architecture, including GNN-based ETA research
and GNNs. Section 3 provides a general explanation of the proposed architecture. Section 4
describes the experimental and comparative analyses of each feature within the TLS session
data using the proposed architecture. Finally, Section 5 concludes the study.

2. Related Work

This section describes the related studies for a better understanding of the proposed
architecture. Further, detailed definitions of the components required to configure the
proposed architecture are also presented.

2.1. Encrypted Network Traffic

ETA is a technology defined by Cisco for classifying malicious encrypted network
traffic based on network data received from network devices and ML algorithms [24,25].
The network data used in ETA, including byte allocation, TLS-related functions, and
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packet-length-based ETA, are advantageous for handling the large volumes of data that
are required to construct a classification model using the statistical features or behavioral
characteristics of encrypted network traffic. When creating an encrypted channel on the
network, only certain plain text data in the payload of encrypted traffic can be analyzed.
Therefore, ETA is performed via the application of anomaly detection technology to the
traffic rather than to the payload. ETA methodologies can be divided into traditional ML
and DL methods and expert knowledge methods [26]. In the case of ML, feature selection
must be preceded by a process such as feature engineering, whereas this can be omitted in
DL [27]. In particular, DL-based ETA omits the manual feature extraction process, thereby
facilitating the processing of constantly changing traffic patterns and improving upon the
limitations of conventional ML, which is plagued by generalization constraints in terms
of classification accuracy [26]. Previous research extracted meaningful information from
network traffic and classified it using machine learning models. Moreover, because DL
methods exhibit high traffic classification performance while omitting the need for efficient
feature extraction processes, both analysis models have been recently used. However,
in the case of DL, anomaly detection cannot actively respond to abnormal traffic in the
absence of a basis for judging abnormal traffic. Therefore, the traditional ML method,
which determines the abnormal traffic, is used. In the case of the DL method, studies have
used models that can explain detection results [27], such as XAI [28].

In earlier algorithms, the features most commonly used in ETA were the IP, port, and
packet length, which can be obtained from packet headers and payloads [7–10,12–14,17,20].
Various learning algorithms, such as ML, CNNs, and GNNs, have been used in ETA
and have achieved excellent performance. Recently, when using ML for ETA, in contrast
to the existing method of using only ML, a two-layer detection framework combined
with a neural network (long short-term memory, residual neural network, etc.) was
proposed, and a high accuracy of 99.73 was achieved [6]. They achieved an efficiency
of 88.5–99.9% and employed various GNN-based models, such as graph convolutional
networks (GCNs) [10,11,13,17,21,29], message passing neural networks (MPNNs) [30],
graph attention networks (GATs) [31], and graph samples and aggregates (GraphSAGE) [32].
Handshake data have also been used in ETA [7,11,19]; these studies reported performance
efficiencies of 96–99.9% using the GCN and GraphSAGE models and the GNN model.
Certain studies have also used features such as packet length sequences [15,16] or flow-
based features [21], as well as GNN-based ETA, using various features such as dividing the
open systems interconnection (OSI) layer to configure data individually [18]. In addition, a
method combining bidirectional encoder representations from transformers (BERT) and the
CNN model was recently implemented. The byte feature convolution (BFCN) model-based
classification technique [22] used this method and achieved an accuracy of 99.12–99.65%.
In addition, malicious encrypted traffic with a causality explainable detection system
(METCXDS), built using the Wasserstein GAN (WGAN), a type of generative adversarial
network (GAN), achieved 99.5–100% FSr [23]. The use of packet length sequences yielded
performances in the range of 95.97–98.86%. Flow-based features demonstrated a relatively
low performance of 93%, and features based on individual configuration of data using
the OSI layer achieved a performance of 97.48%. Table 1 summarizes the features used
for learning, models, proposed techniques, and datasets used for accuracy verification in
each study.

Table 1. Related studies on ML, DL, and GNN-based network traffic analysis.

Author Feature Model Performance
(%)

Dataset
(Ref. or Name)

Wang et al. [6]

Flow duration, Payload ratio, TCP
payload length, Number of payload
per session, TTL of each encrypted

session, Ratio of flow duration

LSTM, ResNet,
Random Forest/

XGBoost
99.73

Benign Capture, Mixture
Capture, CICIDS-2017,

CICIDS-2012,
CIRA-CIC-DoHBRW-2020
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Table 1. Cont.

Author Feature Model Performance
(%)

Dataset
(Ref. or Name)

Shen et al. [7]
Src IP, Dst IP, Src Port, Dst Port,

Protocol, Packet length,
TCP/IP flags

GNN 99.73
(Acc.) Router of China Univ.

Liu et al. [8] Packet header, Payload byte MPNN 97
(Acc.) CICAndMal2017, AAGM

Zhang
et al. [9] Packet header, Payload GraphSAGE 95.97–98.88

(Acc.)

ISCX VPN-nonVPN, ISCX
Tor-nonTor, self-collected

WWT

Hu et al. [10]
Payload (excluding packet Ethernet

header, IP, transport header, and
upper layer payload)

GCN 99.9
(Acc.) UNB-ISCX, TrafficX

Hong
et al. [11]

Handshake data and session
metadata, conn.log, ssl.log, x509.log GCN, GraphSAGE 99.9

(Acc.) CTU-13, MCFP

Pang
et al. [12]

Src IP, Src Port, Dst IP, Dst port,
Protocol type SGC 95.23

(Acc.) ISCX

Sun et al. [13] Src IP, Src Port, Dst IP, Dst Port,
Protocol type GCN 94.33

(Acc.)
ISCXVPN-nonVPN,

USTC-TFC2016

Huoh
et al. [14]

Packet raw byte, Src IP, Src port, Dst
IP, Dst port, Protocol type GNN 89.55

(Acc.) ISCXVPN 2016

Jiang
et al. [15]

Packet length seq, Adjacent packet
time GNN interval seq, Network

flow start time
GNN 98.66

(Acc.)
Wang [33],

self-collected

Diao et al. [16] Packet length seq GNN 96.86
(Acc.)

OBW30, HW19,
ISCX-Tor

Huoh
et al. [17] IP, port, raw byte GCN 88.5

(Acc.) ISCXVPN-nonVPN

Okonkwo
et al. [18] Set data individually by OSI layer GNN 97.48

(Acc.) ISCXVPN-nonVPN

Pang
et al. [19] Handshake data GNN ≒ 96

(Acc.)
Pengcheng lab. real-world

web testbed [34]

Zhao
et al. [20]

Flow seq, Src IP, Src port, Dst IP, Dst
port, Protocol type, Raw byte,

Interval time
ResGCN 95.4

(Acc.) SJTU-An21, ISCXVPN2016

Pham
et al. [21] Features related flow GCN ≒ 93

(Acc.) Self-collected

Shi et al. [22] Byte/Packet level feature BFCN 99.12–99.65
(Acc.) ISCX-VPN

Zeng
et al. [23]

Time sequence feature
(arrival order, packet time arrival,

etc.), flow ID, Src IP, Dst IP, Src Port,
Dst Port, time series features,

protocol features, payload features,
statistical feature, etc.

WGAN 99.5–100
(FSr) CICIDS2017, DoHBrw2020

2.2. Graph Neural Network and GraphSAGE

The GNN model is a geometric learning technique used to process graph structure data
composed of nodes and edges [35]. GNNs aim to understand the structural information
within a graph by embedding a vector based on the situation of each node. This process
includes two major stages: message passing and aggregation. In the first stage, the local
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graph neighbors of each node v pass information collected from each neighbor as v through
v. In the second stage, the aggregation function of v aggregates all the information from the
local neighboring nodes. The quality of the employed aggregation function determines the
performance of the GNN model. Various state-of-the-art approaches has been proposed
to optimize the representation capacity of GNNs [36,37]. The authors in [38] proposed an
injective aggregation function based on a full rank aggregation function to enhance the
representation capacity of the GNNs. The aggregation stage can be repeated a predefined
number of times until a sufficient representation is obtained for each node in the graph.
Owing to the possibility of losing the information of the target node during the message
passing process, the GNN framework saves the node information separately to prevent the
loss of information prior to the message passing stage. In most cases, a multilayer percep-
tron (MLP) with a trainable weight matrix is used to help learn the specific embeddings for
nodes or edges.

Furthermore, the GNN operation can be generalized as indicated by Equation (1).
In Equation (1), hk

v is a vector value representing the kth embedding of node v. The new
hidden state of a given node is calculated by considering its interaction with neighboring
nodes, the state in the previous layer, and the weight and bias. In addition, it iteratively
extracts the characteristics within the graph. Thus, Equation (1) multiplies the weight
matrix Wk of the kth layer by the average of the hidden states of the k− 1th layer for all
nodes u neighboring node v, adds the bias value Bkhk−1

v , and then uses the sigmoid function
to adjust the value. The bias value is a parameter related to the model’s data adaptability
and the appropriateness of the output value and is adapted to the data to improve model
performance [39]. To generate new features of the current node, Equation (2) is used;
where, mN(v) denotes the message aggregated from the graph neighbors of v. Obtaining
the sum of neighboring embeddings renders the GNN unstable and sensitive to node
degree. Consequently, the GNN framework normalizes the aggregation operation based
on node degree, as expressed by Equation (2). Thus, the GNN updates each node’s
attributes and synthesizes information from neighboring nodes to support the creation of
new characteristics of the current node.

hk
v = σ

(
Wk ∑

hk−1
u

N(v)
+ Bkhk−1

v

)
(1)

mN(v) = ∑
hk−1

u
N(v)

(2)

Following embedding, the result can be assigned to the loss function, and the weight
parameters can be trained through either unsupervised or supervised learning. GNNs
offer the advantages of universality and flexibility because they can integrate the global
attributes shared by all nodes assigned to the graph used as the input [17].

Several studies have examined various GNN models, such as GCN, GraphSAGE,
GAT, and MPNN. GraphSAGE can overcome the limitations of the transductive learning
method; it learns node embedding for existing fixed graphs and can perform inductive
node embedding for newly added nodes in evolving graphs. During the GraphSAGE
learning process, operations are conducted in batches, and a fixed number of nearest nodes
(neighbor nodes) are sampled by the uniform random draw method in each iteration. In
other words, the model uses a neighbor sampling technique; that is, it does not add all the
neighbor nodes to the embedding operation but rather samples only a predefined number of
neighbor nodes. Consequently, optimization is performed during the GraphSAGE learning
stage, and following K iterations, the input node representation zu, u ∈ V is calculated
using Equation (3). Equation (3) is the loss function calculation formula of GraphSAGE,
which explains the process of learning relationships by considering positive/negative
samples during the learning process. The loss function Jϑ(zu) calculates the dot products of
zu and zv, which are the embedding vectors of nodes u and v, adjusts the value with the
sigmoid function δ, and calculates the log loss related to the probability of the relationship
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between node u and neighboring node v. This value plus the loss Q for negative samples
for node u and the expected value for negative samples Evn∼Pn(v)

, multiplied by the log loss
of the probability of the relationship between node u and its neighbor node v, is derived
by subtracting the sum of the values. By employing this approach, the model learns the
relationship between positive and negative samples and updates the embedding vector of
node u.

Jϑ(zu) = −log(δ(zu ⊺ zv))−Q·Evn∼Pn(v)
log(δ(−zu ⊺ zv)) (3)

Aggregation reflects the information of the nodes using Equations (4)–(7). This in-
volves performing a linear transformation on each node’s embedding and then aggregating
the information of the neighboring nodes through elementwise max pooling:

The weight matrices Wk, k ∈ {1, 2, . . ., K} of the aggregator function are trained through
gradient descent. Here, k is the current step of the outer loop (or search depth), and hk
represents the representation of the node at this step.

The graph-based loss function was applied to the output representation zu, ∀u∈ V, and
the weight matrix of the aggregate function Wk, ∀k ∈ {1, 2, . . ., K} was adjusted to ensure
that the neighboring nodes had similar representations while distinguishing among the
various node representations. Here, v is a node that occurs together near u in a fixed-length
random walk, δ is a sigmoid function, and Q is defined as the number of negative samples.
In contrast to traditional embedding approaches, zu input to this loss function is generated
not by training unique embeddings for each node but rather through the features included
in the local neighbors of the node.

hk
v ← δ

(
W·MEAN

({
hk−1

v

}
∪ {h k−1

u , ∀u ∈ N(v)
}))

(4)

hk
v = LSTM

(
Qhk−1

u , ∀u ∈ N(v)
)

(5)

hk
v ← AGGREGATEk

(
[h k−1

u , ∀u ∈ π(N(v))
])

(6)

hk
v ← δ

(
Wk·CONCAT

(
hk−1

v , hk
N(v)

))
(7)

In Equation (4), the mean aggregator utilizes the elementwise average of vectors
located in {h k−1

u , ∀u ∈ N(v)
}

, connecting the previous layer representation of node hk−1
v

to the aggregation neighbor vector hk
N(v)

, thereby enhancing the performance. Further-
more, the LSTM aggregator in Equation (5) applies LSTM to random permutations of
node neighbors, thus adjusting it to work on an unordered set. The current state is up-
dated by providing the hidden state in the k− 1th layer for neighboring node u mul-
tiplied by Q as input to the LSTM. Finally, in Equation (6), the pooling aggregator in-
dependently feeds each neighbor’s vector through a fully connected neural network.
AGGREGATEk

(
[h k−1

u , ∀u ∈ π(N(v))
]
) aggregates the hidden states of the surrounding

neighboring nodes, and the neighboring node π(N(v)) of node v, the hidden state in the
k− 1th layer of node v, is synthesized to generate the hidden state in the kth layer of node
v. Finally, Equation (7) explains the hidden state hk−1

v of node v in the k− 1th layer in
Wk, and the concatenated values of the hidden state hk

N(v)
in the kth layer of neighboring

nodes N(v) are multiplied. Consequently, the value is updated by applying the sigmoid
δ. By effectively synthesizing information from surrounding neighbors and updating the
hidden state of all nodes by repeating this process across multiple layers, GraphSAGE can
effectively learn the embedding of nodes within the graph [32].

3. Proposed Architecture

Table 1 indicates that ML, DL, and GNN-based ETA often use packet payloads or flow
characteristics. Further, when using GNN, they can represent and analyze the interrelation-
ships between network traffic types, demonstrating excellent performance. Studies on the
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utilization of GNNs for the classification of encrypted network traffic are underway [6–23].
Moreover, continuous research is expected to be conducted using feature selection and
detailed model settings owing to automated learning and high performance. Therefore, this
study proposed an ETA leveraging GNN and optimized feature dimensionality reduction
that can classify normal or malicious network traffic using fewer features than existing
methods. Figure 1. shows the architecture proposed in this study.
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3.1. Expression Notations

Table 2 presents the expressions used in this study and describes the specific symbols
used in the composition of the proposed architecture.

Table 2. Description of expressions.

Notation Description

G(v, e)
Graph structure based on TLS session data (v denotes vertex (node) using ip address and port; e denotes edge using

CipherSuite, MessageLen, JA3, Label (normal or malicious))

xv Vertex (node) features using TLS session data (IP add, port)

uv u denotes the source and v denotes the destination of network traffic for composing the edge

euv Edge features using TLS session data (CipherSuite, MessageLen, JA3, Label) (condition : ∀uv ∈ e )

N Number of epochs

L Loss function (cross-entropy loss function in GraphSAGE model and binary cross-entropy loss function in
prediction model)

K Message passing depth for GraphSAGE model processing

AGGk Message aggregation function using the message passing depth K for message passing in GraphSAGE model

Wk Weight matrices value element from the latent vector

zuv
Outcomes of the GraphSAGE model, embedding result or contextualized representation of the input graph

structure data (condition : ∀uv ∈ e )

δ Sigmoid function symbol

3.2. Data Collection

Encrypted network traffic data were collected from both normal and malicious sources
to extract features for distinguishing activities and training. Normal encrypted network
traffic was collected using the Wireshark tool [40] on Windows 10 Pro for Workstation
(version 22H2, OS Build 19045.3208). The data were collected by visiting normal HTTPS
sites using Wireshark’s Capture feature in a secure environment where Windows-provided
Firewall and Defender were operating; thus, the collection of reliable normal network
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traffic was ensured. The malicious network traffic dataset was collected through websites
providing datasets such as Malware-Analysis-Traffic [41]. Encrypted normal and malicious
network traffic data were collected as network traffic with the same features and similar
characteristics, and normal and malicious network traffic data were merged, shuffled,
and used for training to classify the network traffic fairly well and prevent overfitting to
specific features. The overall dataset comprises 1,275,521 packets, of which 822,367 packets
identified as normal and 453,154 packets identified as malicious. For training the proposed
architecture, only the TLSClientHello data within the TLS session data were used to classify
normal/malicious network traffic. For this architecture-based classification, the data were
separated into training and validation datasets, and the ratio of training to validation data
was set to the commonly used ratio in artificial intelligence training, that is, 7:3. Table 3
presents detailed information on the dataset, including the number of packets within the
normal or malicious encrypted network traffic and the TLS session data.

Table 3. Dataset used in this study.

Network
Traffic Dataset Total Normal Malicious

All network
traffic data 1,275,521 822,367 453,154

TLS session data
(server/client)

7152
(3583/3569)

3364
(1684/1680)

3788
(1899/1889)

3.3. Feature Extraction

The ETA-GNN architecture uses metadata for the classification of encrypted network
traffic. Therefore, metadata must be extracted from the network traffic within the collected
dataset. Here, we extracted metadata that could be used to classify encrypted malicious
network traffic using network traffic analysis tools.

NETCAP-Based TLS Metadata Extraction

To extract metadata, NETCAP [42], which can convert network packet streams into
specific protocols or abstraction records as desired by the user, was used. NETCAP is
a useful tool for network traffic analysis because it can read .pcap files and extract only
the desired columns. The process of extracting TLS metadata through NETCAP was as
follows. Figure 2 illustrates a part of the TLSClientHello Metadata.csv file generated
through NETCAP.
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Step 1. Setting up the Docker environment.

NETCAP supports macOS, Linux, Windows, and Kali Linux environments. For this
process, Docker must be installed on a Kali Linux system. Once Docker is set up, the .pcap
files, which are externally stored, should be moved into the Docker container to render
them accessible for processing with NETCAP.

Step 2. Identifying extractable fields.

After initializing NETCAP, the .pcap file is imported and stored. Prior to the extraction
of specific data, all the available fields that NETCAP can extract from the TLSServer-



Symmetry 2024, 16, 733 9 of 21

Hello/TLSClientHello metadata, such as Timestamp, Version, and CipherSuite, must
be reviewed.

Step 3. Data extraction from metadata

From the TLSServerHello/TLSClientHello metadata, the necessary fields are selected
to serve as features for the analysis. For TLSServerHello, the fields Timestamp, Version, Ci-
pherSuite, Extensions, SrcIP, DstIP, SrcPort, and DstPort are extracted. For TLSClientHello,
Timestamp, Version, MessageLen, HandshakeType, HandshakeLen, HandshakeVersion, Ci-
pherSuiteLen, ExtensionLen, CipherSuites, SrcIP, DstIP, SrcPort, and DstPort are extracted.

Step 4. Storing extracted data

Following the extraction Steps 1–3, the selected metadata fields should be compiled
and saved in a .csv format. This .csv file, which contains the TLSClientHello feature data,
will be utilized for training the ETA-GNN model.

3.4. Data Preprocessing

The data preprocessing steps involved data scaling, graphing network traffic data
(nodes: Src and Dst IP/Port; edges: CipherSuite, MessageLen, JA3), and other steps to
prepare the data for learning based on the proposed architecture.

3.4.1. Data Scaling and Normalization

Data preprocessing, which involves scaling and normalization, is required before
commencing efficient learning. Standardization of the features is crucial in scenarios
wherein the features have different scales. This is because this approach helps prevent
certain features from disproportionately influencing the learning algorithm because of their
larger magnitudes, ultimately contributing to improved convergence and performance. We
utilized StandardScaler from the scikit-learn preprocessing library, a prominent Python
machine learning toolkit. StandardScaler operates by centering the data, subtracting the
mean from each feature, and then scaling it by dividing each feature by its standard
deviation. Mathematically, for a feature x, the transformation is expressed as Equation (8).

z =
x−mean(x)

std(x)
(8)

where z is the standardized version of x. This process ensures that each feature has a mean
of 0 and a standard deviation of 1, placing them on a consistent scale.

Owing to the minimum and maximum values of the data being unknown, the pro-
posed architecture used StandardScaler to adjust the data scale by setting the mean to 0
and variance to 1 [43]. Furthermore, this process could occur either before or after splitting
the dataset into training and testing sets. In this architecture, scaling was performed before
dividing the dataset, whereas normalization was subsequently performed.

3.4.2. Graph Data Generation

A GNN performs graph-based learning, wherein the data are transformed into a graph
format comprising nodes and edges. The architecture requires the simultaneous presence
of multiple nodes and edges, and as encrypted network traffic data are organized into
graphs, they are composed of a directed graph to represent the source and destination.
Therefore, MultiGraph is used with nodes using the two features IP address and port, and
edges using the three features CipherSuite, MessageLen, and JA3, as shown in Figure 3.
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3.5. Feature Selection
3.5.1. CipherSuite

CipherSuite defines the set of encryption codes used in the ClientHello and ServerHello
messages. The encryption sets vary depending on the TLS version, and they define the
supported encryption standards based on the TLS protocol being used. CipherSuite is used
when performing server authentication or, optionally, client authentication using the Diffie–
Hellman (DH) algorithm. DH represents an encryption set containing DH parameters
signed by a certification authority in the certificate of the server. The DH ephemeral
(DHE) refers to temporary DH, wherein the temporary parameters are defined by the
certification authority and the signature algorithm used by the server is specified after the
DHE component in the CipherSuite name. The server can request a signable certificate
from the client for authentication or a DH certificate, and any DH certificate provided by
the client should use the parameters (group and generator) specified by the server [44]. We
confirmed that there are specific CipherSuites used only by normal or malicious encrypted
traffic among the various CipherSuites used in TLS sessions, as shown in Figure 4. This
process facilitated the identification of the server that chooses which CipherSuite to use and
the client that offers a list of available CipherSuites. This indicates that there are specific
CipherSuites used only by either normal or malicious entities.
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Consequently, this feature was selected as the primary feature for classifying normal
and malicious encrypted traffic.
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3.5.2. MessageLen

MessageLen defines the length of the messages sent and received by the client. En-
crypted malicious network traffic messages are often characterized by varying lengths,
as attackers may inject malicious behavior into normal messages or send only specific
malicious traffic. However, we observed the use of a specific MessageLen by the encrypted
malicious network traffic being sent, as shown in Figure 5. Therefore, we chose the length
of the message as our primary feature.
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3.5.3. JA3

JA3 is a TLS client fingerprinting method that captures specific TLS client behaviors
and comprises elements such as the SSL/TLS version, CipherSuite, and extension. JA3
primarily identifies specific TLS clients and plays a role in detecting potential malicious
activities based on known JA3 signatures [44]. In addition, we observed that there were
types of JA3 that used only encrypted normal network traffic and JA3 that used only
encrypted malicious network traffic, as shown in Figure 6. Based on these findings, JA3
was selected as the main feature.
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3.6. ETA-GNN Model

The ETA-GNN model classified malicious traffic based on TLS session data composed
of a directed graph within encrypted network traffic, using GNN and multilayer perceptron.
We employed the GraphSAGE [32] framework for inductive representation learning and
trained the model from scratch using the provided dataset. The GraphSAGE model offers
the advantage of creating and applying new subgraphs for smooth graph data aggregation,
targeting the nodes where the learning and validation processes are being performed.
To classify malicious network traffic using GraphSAGE, the ETA-GNN model used TLS
session data extracted from previously collected network traffic; among these data, only
the TLSClientHello data, which are easily detectable for malicious activities, were used.

3.6.1. GraphSAGE Model

This section describes the GraphSAGE model used in the ETA-GNN. GraphSAGE
incorporates inductive representation learning capabilities and deploys a nodewise sam-
pling technique, effectively mitigating the complexities associated with large-scale graphs.
Notably, GraphSAGE introduces mini-batch training and a fixed-size neighbor sampling
algorithm to accelerate the training process. The mini-batch training strategy, a key feature
of GraphSAGE, reduces the computational costs during the training phase. By consider-
ing only the nodes used in computing representations within each training iteration, we
significantly diminished the number of sampled nodes, thereby enhancing the efficiency.
Furthermore, GraphSAGE employs a fixed-size set of neighboring nodes for each layer
during computation, deviating from the conventional approach of using entire neighbor-
hood sets. This strategic sampling technique is instrumental in further improving training
efficiency and mitigating issues related to neighborhood expansion. We expect that these
enhancements, stemming from GraphSAGE’s design, would effectively bolster the ro-
bustness, scalability, and efficiency of our model, particularly in the context of large-scale
network traffic analysis.

GraphSAGE performs message passing, a task that updates the state of a node using
the information of neighboring nodes (feature values of nodes and edges) in the graph as
shown in the Algorithm 1, line number 17. To do this, the model accepts network traffic
data G(v, e) graphed from TLS session data as input. Here, v comprises vertices (nodes)
composed of the IP address and port values in the TLS session data. Further, e represents
edges, comprising CipherSuite, MessageLen, JA3, and label values indicating normal or
malicious. The node ( xv) and edge {euv, ∀uv ∈ e} features that represent this process are
used for learning, along with the number of epochs (N) for model training and the loss
function (L), which is a cross-entropy loss function. For GraphSAGE, two main components
are needed: message aggregation and concatenation, as described in Algorithm 1, line
number 17 and 18. The message aggregation function combines the information for a
specific node from the neighboring nodes and transforms it into a single message, denoted
as AGGk. The AGGk function is defined as Equation (9). The message concatenation
function combines the aggregated information of neighbors and a specific node into a
single message, denoted as CONCAT

(
hk−1

v , hk
N(v)

)
. It is defined as Equation (10). The

message passing depth was set to K, and the parameter representing the message connection
used weight matrices Wk, ∀k ∈ {1, . . . , K}. Through this message passing process, the
connectivity between neighboring nodes of the input G(v, e) was considered, and the
contextualized result value, the edge embedding {zuv, ∀uv ∈ e}, was obtained for learning.

hk
N(v) ← AGGk

{
ek−1

uv , ∀u ∈ N(v), uv ∈ ξ
}

(9)

hk
v ← δ

{
Wk•CONCAT

(
hk−1

v , hk
N(v)

)}
(10)

GraphSAGE derives results based on the weights of the graph data input into the
embedding space using an efficient sigmoid activation function, and the dropout was set
to the optimal value of 0.2. The GraphSAGE model dynamically set the input and output
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dimension lengths of the TLSClientHello data feature values, which comprised edges
within the graph data. These hyperparameters were selected by employing a grid search
algorithm to identify the optimal hyperparameter settings. The hyperparameters were
selected within a predefined range of options. To enhance efficiency and avoid unnecessary
attempts, we strategically selected the hyperparameters and their corresponding best-
performing ranges based on practices established in prior studies [45–47]. Accordingly, the
message aggregator type, learning rate, batch size, embedding depth, and hidden-layer size
were optimized. For the message passing layers (K = 2), Algorithm 1 line number 15, we
implemented varying neighborhood sampling depths for the first and second aggregation
layers based on the graph’s degree distribution.

Algorithm 1: GraphSAGE embedding

1. Input:
2. Graph: G(v, e)
3. Node feature (xv), number of epochs (N),
4. loss function (L) (cross-entropy loss)
5. Edge features: {euv, ∀uv ∈ e}
6. Message passing depth: K
7. Aggregator: AGGk
8. Parameters:
9. Weight matrices: Wk, ∀k ∈ {1, . . . K}
10. Output:
11. Edge embeddings {zuv, ∀uv ∈ e}
12. for iteration 1 to N do:
13. for all xv ∈ D do:
14. h0

v = xv,∀v ∈ V
15. for k← 1 to K do:
16. for v ∈ V:
17. hk

x(v) ← AGGk

{
ek−1

uv , ∀u ∈ x(v), uv ∈ e
}

//Message Aggregation

18. hk
v ←Wk•CONCAT

(
hk−1

v , hk
N(v)

)
//Message Concatenation

19. hk
v ← δ

{
hk

v

}
//Add Nonlinearity(Sigmoid Function)

20. L ← cross-entropy loss
21. zuv = hk

v

Considering our graph’s density of approximately 2.003, which indicates a relatively
dense graph, we extended the maximum depth range following established practices from
prior studies. The performance evaluation involved the testing of various combinations
within the specified ranges for each hyperparameter, as presented in Table 4. The best-
performing hyperparameter is highlighted in bold.

Table 4. Hyperparameter settings.

Hyperparameter Range

Message aggregator Mean, maxpool, meanpool, and lstm
Learning rate 0.1, 0.01, 0.001, 0.0001, 0.00001

Batch size 32, 64, 128, 256, 512
Max neighborhood depth for the first hope

sampling 15, 20, 25, 30

Max neighborhood depth for the second hope
sampling 5, 8, 10

Hidden-layer size 64, 128, 256
Dropout probability 0.1, 0.2, 0.3, 0.4, 0.5

Based on the configured GraphSAGE, the accuracy of the labeled normal or mali-
cious traffic classification was computed using the edge values of the input graph data
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(CipherSuite, MessageLen, and JA3 features). Furthermore, GraphSAGE was used to an-
alyze the correlation between the network traffic that was graphed. Consequently, two
fully connected graphs were derived and the network traffic was classified using the
prediction model.

3.6.2. Prediction Model

In this section, we describe the prediction model used in the ETA-GNN model. The
prediction model, a neural network model for binary classification, is a fully connected
neural network model comprising two linear layers. This model was used to classify nor-
mal/malicious network traffic. To do this, the embedding result xi{embedding result zuv}
derived through GraphSAGE was accepted as the input. Similar to GraphSAGE, the model
used the number of epochs (N) for model learning and the loss function (L), which was a
binary cross-entropy loss function, as shown in Algorithm 2, line number 2 to 4. Further-
more, the learning parameters were set and distinguished in the form of a weight and bias
matrix {wi, bi}, as shown in Algorithm 2, line number 6. Based on the learning obtained
from the prediction model, the classification result (y) was the outcome of applying SoftMax
to the final layer output, and it represents the predicted probability for normal/malignant
classification, as shown in Algorithm 2, line number 14.

Algorithm 2: Prediction model

1. Input:
2. input feature xi {embedding result zuv}
3. number of epochs (N)
4. loss function (L)
5. Parameters:
6. weight and bias matrix{wi, bi}
7. Output:
8. Classification result (y)
9. for iteration 1 to N do:
10. xi ← flatten zuv
11. outputs = pass through two linier layers
12. L ← binary cross-entropy loss
13. backpropagate the gradient and update trainable parameters
14. y = softmax(outputs)

The input length of the prediction model was set to the length of the edge feature. It
used the ReLU activation function, which enabled simple computations and easy layer
configuration, thereby exploiting the fully connected graph derived through GraphSAGE.
The dropout value was set to the optimal value of 0.2. Moreover, a loss function was used
to determine whether there was a learning loss in classifying normal/malicious network
traffic based on the feature values within the input TLS session. Furthermore, considering
the characteristics of network traffic data with multiple feature values, the Adam optimizer
was used to optimize the learning rate. Based on the above-described GraphSAGE and
prediction models, training was conducted using the constructed ETA-GNN model.

4. Implementation
4.1. Experimental Settings

The experiment to classify normal/malicious network traffic based on the ETA-GNN
model was conducted in the constructed environment, as summarized in Table 5. This
model used PyTorch and Jupyter Notebook to employ Python-based GraphSAGE and
prediction model libraries along with the other Python libraries required to use the collected
network traffic data. Furthermore, we utilized the NetworkX Python package for graph
construction and the DGL library to leverage GPU acceleration.
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Table 5. Development environment.

Components Specification

Operating system Windows 10 Pro

CPU Intel(R) Core (TM) i7-4790K CPU @ 4.00 GHz
×64-based processor

GPU NVIDIA GeForce GTX 1060 6 GB
Random access memory (RAM) 32 GB DDR4 RAM

Machine learning framework PyTorch 1.13
Programming environment Jupyter Notebook with Python 3.11

4.2. Performance Metrics

In this section, we explain the matrices used to validate the performance of the pro-
posed architecture. The superior performance of the ETA-GNN architecture was demon-
strated through its classification accuracy, precision, recall, and F1 score. To evaluate the
ETA-GNN architecture, we used the values of true positives (TPs), true negatives (TNs),
false positives (FPs), and false negatives (FNs) for malicious network traffic classified as
malicious, normal network traffic classified as normal, malicious network traffic classified
as normal, and normal network traffic classified as malicious, respectively. The indicators
TP, TN, FP, and FN were used in the evaluation to demonstrate the superior performance
of the ETA-GNN architecture.

The proportion of normal network traffic wherein the architecture was predicted to be
normal can be evaluated as the recall value, and is obtained as follows:

Recall =
TP

TP + FN
(11)

The actual normal traffic among the traffic types classified as normal network traffic
by the architecture can be evaluated as the precision value, and is obtained as follows:

Precision =
TP

TP + FP
(12)

The performance of the architecture can be evaluated by verifying the actual values
that classify normal network traffic as normal and malicious network traffic as malicious.
This refers to the accuracy indicator that can be used for architectural evaluation, as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(13)

This value provides the intuitive classification accuracy of the architecture. However,
if the data label of the architecture is imbalanced, there are limitations in the accurate
evaluation of its performance. Therefore, the F1-score was used to accurately evaluate the
performance of the architecture. The F1-score, that is, the harmonic mean of precision and
recall, is an indicator that can accurately evaluate the performance of the architecture when
the data label has an imbalanced structure. The F1-score was used to accurately validate
the performance of the architecture as follows:

F1− score = 2× 1
1

Precision + 1
Recall

= 2× Precision× Recall
Precision + Recall

(14)

4.3. Results

In this section, we present a comparative analysis of the classification performance
for various combinations of usable feature values within TLS session data using the pro-
posed ETA-GNN. For this comparison, we used the main feature values (CipherSuite,
MessageLen, and JA3) and selected feature values for comparison (SupportedGroups and
SignatureAlgs) within the utilized TLS session data. By comparatively analyzing the classi-
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fication results of the ETA-GNN architecture based on each feature, we demonstrated the
superior performance of the architecture in classifying normal/malicious network traffic
based on the three main features. Figure 7 presents the overall classification performance
of the ETA-GNN model based on each feature using the confusion matrix. Each feature is
described in detail in the following section.

Symmetry 2024, 16, x FOR PEER REVIEW 16 of 21 
 

 

F1 − score = 2 ൈ 11Precision + 1Recall = 2 ൈ Precision ൈ  RecallPrecision +  Recall (14) 

4.3. Results 
In this section, we present a comparative analysis of the classification performance 

for various combinations of usable feature values within TLS session data using the pro-
posed ETA-GNN. For this comparison, we used the main feature values (CipherSuite, 
MessageLen, and JA3) and selected feature values for comparison (SupportedGroups and 
SignatureAlgs) within the utilized TLS session data. By comparatively analyzing the clas-
sification results of the ETA-GNN architecture based on each feature, we demonstrated 
the superior performance of the architecture in classifying normal/malicious network traf-
fic based on the three main features. Figure 7 presents the overall classification perfor-
mance of the ETA-GNN model based on each feature using the confusion matrix. Each 
feature is described in detail in the following section. 

 
Figure 7. Confusion matrices for distinct features extracted from TLS session data. 

4.3.1. CipherSuite + SupportedGroups 
The SupportedGroup value indicates the group that supports a key exchange when 

the client sends a message for a TLS session connection [1]. The classification accuracy of 
the ETA-GNN architecture using CipherSuite and SupportedGroups as features was 
90.82%, indicating that the SupportedGroups feature can be used to classify encrypted 
malicious traffic. 

4.3.2. CipherSuite + HandshakeLen 
The classification accuracy of the ETA-GNN architecture using CipherSuite and 

HandshakeLen as features was 92.26%. This result was approximately 2% higher than the 
classification accuracy achieved using CipherSuite and SupportedGroups, signifying that 
HandshakeLen can classify malicious network traffic. 

  

Figure 7. Confusion matrices for distinct features extracted from TLS session data.

4.3.1. CipherSuite + SupportedGroups

The SupportedGroup value indicates the group that supports a key exchange when
the client sends a message for a TLS session connection [1]. The classification accuracy
of the ETA-GNN architecture using CipherSuite and SupportedGroups as features was
90.82%, indicating that the SupportedGroups feature can be used to classify encrypted
malicious traffic.

4.3.2. CipherSuite + HandshakeLen

The classification accuracy of the ETA-GNN architecture using CipherSuite and Hand-
shakeLen as features was 92.26%. This result was approximately 2% higher than the
classification accuracy achieved using CipherSuite and SupportedGroups, signifying that
HandshakeLen can classify malicious network traffic.

4.3.3. CipherSuite + SignatureAlgs

SignatureAlgs refers to the signature support algorithms for certificate verification
during the TLS session process. The classification accuracy of the ETA-GNN architecture
using CipherSuite and SignatureAlgs as features was 93.25%. This finding implies that
the architecture can be used to classify malicious activities based on specific certificate
validation algorithms in malicious network traffic. Further, the approximate 1–3% improve-
ment over the classification accuracy of CipherSuite + SupportedGroup or HandshakeLen
indicates that the value of SignatureAlgs can be used to classify encrypted malicious traffic.

4.3.4. CipherSuite + JA3

JA3 is a method of TLS client fingerprinting that captures a specific TLS client, in-
cluding the SSL/TLS version, CipherSuite, and extensions. JA3 fingerprinting can be
used primarily to identify specific TLS clients based on known JA3 signatures related to
malicious activities and detect potentially malicious behavior. The classification accuracy
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of the ETA-GNN architecture using CipherSuite and JA3 as features was 97.24%. This
result, which is approximately 1–7% higher than that of CipherSuite + (SupportedGroup or
HandshakeLen or SignatureAlgs), indicates that the value of JA3 was efficient in classifying
malicious network traffic.

4.3.5. CipherSuite + MessageLen

The classification accuracy of the ETA-GNN architecture using CipherSuite and Mes-
sageLen as features was 94.11%. MessageLen is a method of TLS client fingerprinting that
captures a specific TLS client, including the SSL/TLS version, CipherSuite, and extensions.
JA3 fingerprinting can be used primarily to identify specific TLS clients based on known
JA3 signatures related to malicious activities and detect potentially malicious behavior.
This result, which was approximately 1–7% higher than the classification accuracy of Ci-
pherSuite + (SupportedGroup or HandshakeLen or SignatureAlgs), indicates that the value
of JA3 was efficient in classifying malicious network traffic.

4.3.6. CipherSuite + MessageLen + JA3

The classification accuracy of the ETA-GNN architecture for normal/malicious net-
work traffic based on the combination of CipherSuite, MessageLen, and JA3, which were
selected as the main features, was 99.50%. We derived a higher classification accuracy using
the main features when compared with the classification accuracy based on features such
as SupportedGroups, HandshakeLen, and SignatureAlgs that could be used to classify
normal/malicious network traffic within TLS session data. The architecture used five fea-
tures from the TLS session data: the TLSClientHello dataset’s IP address, port, CipherSuite,
MessageLen, and JA3. The graph shows the classification accuracy of features that can be
used to detect malicious activities and hidden channels within network traffic using the
proposed architecture. The results based on this combination of features proved that it
was possible to classify malicious network traffic that contained malicious activities and
hidden channels using only five features, including the IP address and port. The overall
comparison graph obtained through the experiment is presented in Figure 8.
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4.4. Comparison with Related Work

As described above, we analyzed the normal/malicious network traffic classification
results for each feature combination based on the GraphSAGE and prediction models.
This study established that efficient classification was possible using fewer features than
that typically employed in existing normal/malicious network traffic classification studies,
while achieving similar or greater performance. Table 6 presents a comparative analysis
of the performances of studies that used the GraphSAGE model for normal or malicious
network traffic classification and the proposed model.
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Table 6. Comparison of the number of features and performance between existing studies and the
proposed model.

Author Used Features Number of Used
Features

Accuracy
(%)

Zhang et al. [9]
Packet header from which source and destination IP addresses are
removed and port (sequence number, acknowledgment number,

data offset, flag, window, checksum, etc.), packet payload
More than 7 95.97–98.88

Hong et al. [11]

Handshake data (version, extension) and session metadata (packet
length seq., packet time interval seq., etc.), conn.log (IP addr, port,

connection duration, number and size of upstream and
downstream packet), ssl.log (timestamp, version, key, server name,

etc.), x509.log (certificate serial number, version, issuer, validity
period, server DNS, the type of key, the length of the key, and so on)

More than 23 99.90

Proposed
model TLS session data (IP addr., port, CipherSuite, MessageLen, JA3) 5 99.50

As presented in Table 6, Zhang et al. [9] used more than seven feature values, including
values in the packet header without IP addresses and port and packet payload values.
Hong et al. [11] used more than 23 feature values, including handshake data, session
metadata, and log values representing other network connections and TLS sessions. Each
study used different data for learning with different detailed settings, thereby limiting the
accuracy of the comparative analysis. Nevertheless, Table 6 indicates that the proposed
GraphSAGE-based normal or malicious network traffic classification model yielded higher
accuracy while using fewer feature values than existing methods across various features.

5. Conclusions and Future Work

HTTPS is used to protect sensitive information exchanged across networks. It is ap-
plied by default in the mainstream web browsers used by most Internet users, and the
proportion of encrypted network traffic is increasing. However, encrypted malicious net-
work traffic has also increased as the HTTPS protocol for protecting sensitive information
can be exploited by malicious users. This approach increases the significance of normal or
malicious network traffic classification techniques in response to this trend. Consequently,
rapid analysis of data within real-time network traffic exchanges is required for accurate
classification of network traffic containing malicious activities. This necessitates ensuring
temporal efficiency based on minimal feature selection and high accuracy using optimal
feature combinations. Therefore, this study analyzed the features of TLS session data
that can be used for encrypted malicious network traffic classification and proposed the
ETA-GNN architecture as a method for classifying normal or malicious network traffic
using minimal features. To achieve temporal efficiency with minimal features and high
accuracy using optimal feature combinations, we analyzed each feature combination. The
GraphSAGE and prediction models were used for normal or malicious network classifica-
tion based on correlations between network traffic. The proposed ETA-GNN architecture,
structured with IP addresses and ports as nodes and CipherSuite, MessageLen, and JA3
as edges, demonstrated the best performance (99.50%). This performance was similar to
or exceeded that of existing GNN-based ETA algorithms when fewer features were used,
suggesting that efficient classification of normal or malicious network traffic classification
was possible with lower resources and time. However, although the proposed method
classifies normal and malicious network traffic with high accuracy using reduced features,
there is a limitation in that more reliable verification experiments are needed to demonstrate
low resource usage and time efficiency. To address this, we plan to conduct future works on
this topic. In future research, we plan to analyze the time complexity and verify efficiency
to prove that the technique proposed in this paper is time-efficient and uses fewer resources
by utilizing reduced features. Additionally, by ensuring the reliability of the GNN model
used in this paper through comprehensive model performance evaluation experiments
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considering noise and bias, we aim to develop a highly effective technology for addressing
the large volume of encrypted malicious network traffic in the future.
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