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Quasi-localization and Wannier
obstruction in partially flat bands
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The localized nature of a flat band is understood by the existence of a compact localized eigenstate.
However, the localization properties of a partially flat band, ubiquitous in surfacemodes of topological
semimetals, have been unknown. We show that the partially flat band is characterized by a non-
normalizable quasi-compact localized state (Q-CLS), which is compactly localized along several
directions but extended in at least one direction. The partially flat band develops at momenta where
normalizable Blochwave functions can be obtained froma linear combination of the non-normalizable
Q-CLSs. Outside this momentum region, a ghost flat band, unseen from the band structure, is
introduced based on a counting argument. Then, we demonstrate that the Wannier function
corresponding to thepartiallyflat bandexhibits an algebraicdecaybehavior.Namely, onecanhave the
Wannier obstruction in abandwith a vanishingChern number if it is partially flat. Finally, wedevelop the
construction scheme of a tight-binding model for a topological semimetal by designing a Q-CLS.

Flat bands have received significant attention because they are considered
an ideal playground to study many-body physics1–23 and geometric
properties of the Bloch wave function beyond topological aspects24–33.
While it has long been believed that the flat band can only be realized in
artificial systems34–40, including the Aharonov-Bohm cage with the two-
band Creutz ladder and the three-band rhombic lattice41–45, there has
recently been a surge of research on synthesizing flat band materials46–51

after discovering the unconventional superconductivity originating from
the flat band in the twisted bilayer graphene52. As a result, flat band
materials are now regarded as intriguing quantum materials with pro-
mising implications, attracting interest from both fundamental and
application-oriented perspectives.

The localization of charge carriers in a flat band, essential for under-
standing many-body phenomena in the system, has an intriguing origin.
Suppose a flat band is perfectly dispersionless over thewhole Brillouin zone,
denoted by a fully flat band. The localization nature of the full flat band is
understood by the existence of a special eigenmode called a compact loca-
lized state(CLS)53–56. The amplitude of theCLS is nonzero only inside afinite
region while completely vanishing outside of it. The CLS can be stabilized
due to thedestructive interferenceprovidedby theflat band system’s specific
lattice and hopping structures. This explains how the electrons can be
localized in the flat band systems, although electrons are itinerant via the
hopping processes. Moreover, it was shown that when the flat band’s Bloch
eigenfunction possesses a singularity due to a band-crossing, one cannot
find a set of independent CLS spanning the flat band. In this case, several
extended states, called the non-contractible loop states, should be added to

the set to achieve completeness53,54. Non-contractible loop states exhibit
exotic real-space topology probed in photonic lattices37. From designing
CLSs and non-contractible loop states, one can also easily construct flat
band tight-binding models57.

Besides the full flat band, one can also observe partially flat bands
frequently on the edge or surface of topological semimetals, such as gra-
phene and nodal line semimetals58–64. In the zigzag graphene nanoribbon,
wehavepartiallyflat bands between twoDiracpoints. In fact, they are nearly
flat bands with momentum dependence ~ (k−π)Q around the zone
boundary, whereQ is the number of dimer lines proportional to the ribbon
width. In the semi-infinite limit(Q→∞), the exact partially flat band is
realized. The partially flat bands of the zigzag graphene nanoribbon
attracted tremendous attention due to their instability toward the half-
metallic ground state65. Another well-known example is the drum-head
surface states of nodal-line semimetals61–64, which are expected to lead to the
high-temperature superconductivity66.

This paper answers the question of how to understand the locali-
zation nature of partially flat bands. In the case of the full flat band, one
can always find N(the number of unit cells in the system) CLSs spanning
the flat band completely if the flat band has no singularity54. This property
characterizes the localization nature of the full flat band54,55,67. The same
idea may not be applied to the partially flat band because it has only fN
degenerate Bloch states, where f is a fractional number(0 < f < 1) repre-
senting the ratio between the flat region and the Brillouin zone. However,
N number of different CLSs must exist if at least one CLS is found, by
moving the center of the CLS to different unit cells. This macroscopic
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mismatch between the number of Blochwave functions andCLSs implies
that the conventional CLS cannot exist in the partially flat band.

We demonstrate that the partially flat band is characterized by an
unconventional type of CLS called a quasi-compact localized state(Q-
CLS). Note that the Q-CLS is non-normalizable. With a normalizable
regular localized eigenstate, one can find N independent such states by
translated copies of them. Then, their Bloch summations with different
crystal momenta giveN independent Bloch states, which correspond to a
full flat band, not a partially flat band. The partially flat bands are usually
found in semi-infinite systems, where the normalizability condition can
be broken. The Q-CLS shows the compactly localized feature along the
translationally invariant direction.However, its amplitude can grow away
from the boundary, resulting in a non-normalizable state. Although it
does not make sense to use the non-normalizable states conventionally,
we note that their Bloch sums can be normalizable depending on the
crystal momentum. The partially flat band appears in the momentum
range with normalizable Bloch sums of Q-CLSs, while we propose that
there is a ghost flat band outside this range because the corresponding
Bloch states cannot be normalized. The unphysical, non-normalizable
states cannot be observed in a spectroscopy. However, introducing the
ghost flat band can resolve the frustrated counting argument because we
have the same number of Bloch states(from both the partially flat band
and ghost flat band) and the Q-CLSs. We also investigate the localization
properties of the Wannier functions of the partially flat band. The
exponential decay of the Wannier function of an isolated analytic band
explains the localization nature of insulators68,69. This Wannierization is
obstructed in topological bands due to the singular properties of the
corresponding Bloch wave function70. We show that the Wannier
obstruction can also occur in a topologically trivial band if it is a partially
flat band because the Bloch wave functions in the ghost flat band do not
participate in the construction of the Wannier functions. In the partially
flat band, the Wannier function exhibits 1/r1+ϵ and 1/r3/2+ϵ decays with a
positive number ϵ in 1D and 2D, respectively, instead of the exponential
one. Finally, we develop a systematic scheme for constructing a tight-
bindingHamiltonian hosting a partially flat band by designing anQ-CLS.
Since the partially flat bands are usually the surface modes of topological
semimetals, this scheme can be used to obtain topological semimetal
models.

Results
Non-normalizable compact localized states
We discuss the generic localization nature of a partially flat band by
considering a specific example, the partially flat band of a semi-infinite
graphene with a zigzag edge, illustrated in Fig. 1(a). As denoted in
Fig. 1(b), positions of A and B sites are represented by
RA(m, n) =ma1+ na2 and RB(m, n) =ma1+ na2+ b, respectively,
where a1 ¼ að ffiffiffi

3
p

=2;�1=2Þ, a2 = a(0, 1), and b ¼ ða= ffiffiffi
3

p Þð1=2; ffiffiffi
3

p
=2Þ.

Here,m≥0 is the dimer line index, and a is the lattice constant. The dimer

line indicates the zigzag chain of carbon atoms along y-direction in
graphene. The dimer line index m is assumed to increase away from the
system’s boundary starting from m = 0. Here, only the nearest neighbor
hopping processes are included. We look for a CLS localized along the
translationally invariant direction, namely y-axis in Fig. 1(b). One can
find a zero energy eigenstate, illustrated in Fig. 1(b), whose amplitudes at
A sites are given by

ϕAn� ðm; nÞ ¼ ð�1ÞmmCn�n� ; n� ≤ n≤ n� þm

0; otherwise

�
; ð1Þ

where n*a2 is the position of the left-end vertex of this state, as indicated by
an arrow in Fig. 1(b). Here, mCn=m!/n!(m− n)! is the binomial coefficient.
The amplitudes at B sites, denoted by ϕBn� ðm; nÞ, are zero. This solution is
found by following steps. First, assign an amplitude 1 at an A site at the
boundary (m = 0). Then, we find amplitudes at A sites in the next dimer line
(m = 1) so that the amplitudes of the wave function resulting from the
hopping processes become zero at B sites in them = 0 dimer line.We repeat
the sameprocedure increasingm.We set the amplitudes atB sites identically
zero to obtain a zero-energy solution. In total, the eigenstate is written
as ∣ϕn�

� ¼ P
m;n½ϕAn� ðm; nÞaym;n þ ϕBn� ðm; nÞbym;n�∣0i, where aym;n(b

y
m;n)

creates an electron at A(B) site with position RA(m, n)(RB(m, n)).
The compactly localized feature of this state is due to the
destructive interference between ϕAn� ðm; n�Þ(ϕAn� ðm; n� þmÞ) and
ϕAn� ðmþ 1; n�Þ(ϕAn� ðmþ 1; n� þmÞ) at the neighboring B site after the
hopping processes. However, this is a non-normalizable state since the
amplitudes grow as the dimer line index m increases. This is the Q-CLS
described in the introduction.There areNdegenerateQ-CLSs at zero energy
depending on the vertex position n*, where N is the number of unit cells
along the y-axis. Since the left-end vertices of the N Q-CLSs with different
n*’s donot overlap, theNQ-CLSs are independent of eachother evenwithin
the periodic boundary condition along y-axis.

We show that a normalizable Bloch eigenstate can be obtained from a
linear combination of the Q-CLSs, as illustrated in Fig. 1c. We build an
extended eigenstate satisfying the Bloch theorem given by

∣ψk

� ¼ X
n�

ein
�k∣ϕn�

�
; ð2Þ

whose amplitude reads

ψA
k ðm; nÞ ¼ einkð1þ e�ikÞm; ð3Þ

for the A sites at RA(m, n) while ψB
k ðm; nÞ ¼ 0, as plotted in Fig. 1d. The

eigenenergy corresponding to this mode is zero because that of ∣ϕn�
�
is

zero. Most importantly, the obtained Bloch eigenstate shows exponential
decay along a2 direction if k∈ IL = (− π,− 2π/3) or k∈ IR = (2π/3, π).
Here, the Brillouin zone is set to be− π < k ≤ π. Namely, ∣ψk

�
is a

Fig. 1 | One-dimensional partially flat bands and
quasi-compact localized states. a The band struc-
ture of a semi-infinite zigzag graphene nanoribbon.
At zero energy, the partially flat band and ghost flat
band are plotted by the red solid and gray dashed
lines, respectively. b The semi-infinite zigzag gra-
phene nanoribbon has an edge on the left-hand side.
The quasi-compact localized state(Q-CLS) is drawn
by a gray region. The amplitudes of the Q-CLS are
denoted by the colored circles, whose size stands for
the magnitude of the amplitude, while the color
represents the sign. We have different Q-CLSs
depending on the position of the vertex indicated by
the red star symbol. cA linear combination of theQ-
CLSs, resulting in a Bloch wave function, whose
amplitudes are plotted in (d).
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normalizable one-dimensional Bloch wave function for momenta
belonging to IL or IR. Outside these two intervals, on the other hand,
the constructed Bloch states should be discarded and invisible in
spectroscopy because they cannot be normalized. Therefore, we have zero
energy flat band in IL and IR, which realizes the partially flat band. This
partiallyflat band is not connected to other bands and is terminated in the
middle of the Brillouin zone. Meanwhile, one can consider the zero
energy states corresponding to the non-normalizable ∣ψk

�
outside IL and

IR as a ghost flat band.We have in totalN number of states in the partially
flat band and ghost flat band, which is consistent with the N number of
independent Q-CLSs ∣ϕn�

�
.

In general, we conjecture that a partially flat band is obtained in a
semi-infinite system by discarding the ghost part of a full flat band. A
semi-infinite system is a good playground to have such a ghost band for
the following reasons. Considering only hermitian tight-binding
Hamiltonians, which can be block-diagonalizable into the finite-size
Bloch Hamiltonians, the bulk’s band dispersion should be analytic in
momentum because every matrix element of the Bloch Hamiltonian of
such a model is analytic in momentum space. However, the partially flat
band cannot be an analytic function of momentum because an integer n
exists such that the n-th left- and right-hand derivative of the band
becomes discontinuous at the end-point of the partially flat band.
Therefore, the flat band should always be a full flat band in such a con-
ventional Hamiltonian. One of the ways to violate the properties of the
conventional Hamiltonians is to make the size of the Bloch Hamiltonian
infinite, which is impossible in reality in principle. The semi-infinite
systems are the examples, and the non-normalizable states can emerge in
such systems, as shown in the example above.

We apply our general conclusions to a 3D topological nodal-line
semimetal.We consider the minimal tight-binding Hamiltonian on a cubic
lattice given byHNL ¼ sin kzσy þ ð2� cos kx � cos ky � cos kzÞσz , where
σα is a Pauli matrix representing the orbital degree of freedom for each site.

We denote two orbitals by ξ = ± . The hopping structure is illustrated in
Fig. 2a. Lattice sites are represented by R(n) = nxax+ nyay+ nzaz,
where aα is a unit vector along α-direction. This model hosts a nodal
ring described by 1 ¼ cos kx þ cos ky at zero energy, as plotted in
Fig. 2b. When the system is terminated along z-direction, we have a
drumhead flat surface mode inside the nodal ring. We consider a
semi-infinite system obtained by removing sites with a negative nz in
the cubic lattice. The quasi-localized feature of this drumhead partially
flat band is explained by a zero energy Q-CLS illustrated in Fig. 2c,
whose apex is located at Rðn�Þ ¼ n�xax þ n�yay . Denoting the Q-CLS by
∣ϕn�

�
, its amplitude for the ξ-orbital at R(n) is the coefficient of the

exponential factor eiðnx�n�x Þkxþiðny�nyÞky of a function given by

f ξ;nz ðkx; kyÞ ¼ ξ 2�
X
β

eikβ þ e�ikβ
� �

=2

2
4

3
5
nz

; ð4Þ

where β = x and y. Detailed derivations are included in Supplementary
Notes 1. Since the above formula is a finite polynomial of the expo-
nential factors, ϕn�;ξðnÞ is nonzero only inside a finite region for a given nz,
which implies the compact localization.Then, by a linear combinationof the
Q-CLSs (Fig. 2d), we obtain Bloch eigenfunction, ∣ψk

� ¼ P
n�e

in��k ∣ϕn�
�
,

whose amplitudes are evaluated as

ψk;σ ðnÞ ¼ eiðnxkxþnykyÞð2� cos kx � cos kyÞnz ; ð5Þ

where k = (kx, ky). The Bloch wave function exhibits exponential decay and
can be normalized in a momentum range �1<2� cos kx � cos ky<1,
precisely the same as the drum-head surface mode’s region above. Outside
the nodal ring, the constructed Blochwave function increases exponentially
as a function of nz and cannot be normalized, which leads to the ghost
flat band.

Fig. 2 | Two-dimensional partially flat bands and
quasi-compact localized states. a The lattice and
hopping structures of the 3D nodal line semimetal
model. At each site, two orbitals, denoted by A and
B, reside. Lines with red, blue, and yellow colors
represent hopping processes. Solid and dashed lines
indicate+ and− signs of the hopping amplitudes.
(b) The band structure for kz = 0. The nodal ring is
denoted by the red closed curve. (c) A schematic
view of the quasi-compact localized state(Q-CLS) of
the nodal line semimetal in the semi-infinite system.
(d) A linear combination of Q-CLSs in (c) with
different apex positions, resulting in a Bloch wave
function.

(a) A       A     B       B     A       B (b)

kx

kyE

(c) (d)

Nodal ring

Q-CLS Linear combination of Q-CLSs
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Wannier obstruction
The localization nature of an insulator is explained by exponentially
decaying Wannier functions69. According to the Paley-Wiener theorem,
such states are guaranteed to exist if the Bloch wavefunctions are analytic
over the whole Brillouin zone71. Bloch wavefunctions are always analytic
in 1D, and one can find exponentially localized Wannier functions in a
1D isolated band. On the other hand, in 2D, a topologically nontrivial
band cannot have such a Wannierization due to singularities of the
corresponding Bloch eigenfunction in momentum space. Here, we
investigate theWannier function properties of a partially flat band, where
one cannot apply the Paley-Wiener theorem because the Fourier trans-
form of the Bloch wave function is ill-defined due to the absence of the
wave function outside the partially flat band regions in the Brillouin zone.

Let us begin with the 1D partially flat band of a semi-infinite system. A
general form of the Bloch wave function of the partially flat band is given by

∣ψk

� ¼ lim
Q!1

1ffiffiffiffi
N

p
XQ
m¼1

XPn
σm¼1

vðQÞm;σm
ðkÞeikncym;n;σm

∣0i; ð6Þ

where n is the unit cell index along the translationally invariant direction,m
is the sublattice index, and σm represents the orbital in them-th sublattice.
Here, m increases as we go away from the semi-infinite system’s
boundary(m = 0). The semi-infinity is described by the limit process
Q→∞.We assume that there arePm orbitals in them-th sublattice. Finally,
vðQÞm;σm

ðkÞ is the component corresponding to the σm-th orbital in the m-th
sublattice of the partially flat band’s eigenvector v(Q)(k) of the Bloch
Hamiltonian. Here, v(Q)(k) is obtained by holding the components of the

unnormalized Bloch wave function constructed from the Q-CLSs, such as
(3), up to theQ-th sublattice and normalizing it. For example, for the semi-
infinite graphene, we have vðQÞm ðkÞ ¼ ψA

k ðm; 0Þ=ðPQ
m0¼0 jψA

k ðm0; 0Þj2Þ1=2.
Note that, before reflecting the semi-infinity(Q→∞) of the system, vðQÞm;σm

ðkÞ
is analytic over the whole Brillouin zone, even out of the partially flat band
region. As a result, the Fourier transform of vðQÞm;σm

ðkÞ exponentially decays
far from theWannier center according to the Paley-Wienener theorem and
we have vðQÞm;σm

ðkÞ ¼ ð1= ffiffiffiffi
N

p ÞPne
iknφðQÞ

m;σm
ðnÞ, where φðQÞ

m;σm
ðnÞ∼ e�bjnj for

∣n∣→∞with a positive coefficient b. Now, we obtain theWannier function
for the partially flat band by using this form of vðQÞm;σm

ðkÞ in the semi-infinite
limit(Q→∞). In this limit, vðQÞm;σm

ðkÞ is ill-defined for momenta
corresponding to the ghost flat band. Therefore, performing the integral
over themomentumrange corresponding to thepartiallyflat band is natural
to construct aWannier function from vðQÞm;σm

ðkÞ. Then, theWannier function
amplitude for the σm-th orbital is given by

Wm;σm
ðn� n0Þ ¼

1
N

lim
Q!1

X
k2BZ

vðQÞm;σm
ðkÞeikðn�n0Þ; ð7Þ

¼ 1

N
3
2

lim
Q!1

X
k2BZ

X
n0

φðQÞ
m;σm

ðn0Þeikðn0þn�n0Þ; ð8Þ

where BZ represents the Brillouin zone and n0 is the Wannier function’s
center. Let us denote Δn = n− n0, vm;σm

ðkÞ ¼ limQ!1vðQÞm;σm
ðkÞ, and

φm;σm
ðkÞ ¼ limQ!1φðQÞ

m;σm
ðkÞ. In this semi-infinite limit, the integration

range inmomentum space is reduced to an interval IPFB, where the partially
flat band resides. IPFB is generally an union ofmany sub-intervals, where the
l-th one is [kl,i, kl,f]. Then, the continuum limit of the momentum
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Fig. 3 |Wannier obstruction in partially flat bands. a, b Plot theWannier function
amplitudes of the semi-infinite zigzag graphene nanoribbon and nodal line semi-
metal, respectively.m andmz represent the dimer lines and layers away from the edge
and surface of these two systems. n is an index of the unit cell along a translationally
invariant direction. In the insets, we show that the local maxima of the Wannier

functions decay algebraically. c A band dispersion of a finite-width zigzag graphene
nanoribbon. The red and blue bands in the middle correspond to the edge states.
d The Wannier function for the red band in (c) for various values of m. In (a), (b),
and (d), the dashed curves are the guide lines showing the algebraic decay of the
Wannier functions, obtained by fitting the local maxima of them.
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summation above is given by

Wm;σm
ðΔnÞ ¼ 1

2π
1ffiffiffiffi
N

p
X
n0

X
l

φm;σm
ðn0Þ

Z kl;f

kl;i

dk eikðn
0þn�n0Þ: ð9Þ

Performing the momentum integration, we obtain

Wm;σm
ðΔnÞ ¼ 1

2πi

X
l;α

sα
eiklΔn

Δn
Fl;m;σm

ðΔnÞ; ð10Þ

where

Fl;m;σm
ðΔnÞ ¼ 1ffiffiffiffi

N
p

X
n0

φm;σm
ðn0Þ eikl;α

n0=Δnþ 1
; ð11Þ

and sα =− 1 or 1 forα = ior f, respectively.Detailed derivations are included
in Supplementary Note 2. Since we are interested in the behavior ofW(Δn)
in the limit ∣Δn∣→∞, let us consider a function ~Fl;m;σm

ðxÞ ¼ Fl;m;σm
ð1=xÞ,

where x = 1/Δn. One can show that ~Fl;m;σm
ð0Þ ¼ 0 because the eigenvector

component vm;σm
ðkÞ should be zero at kl,i and kl,f, boundaries of the partially

flat band to be continuously connected to the eigenvector component of the
ghost flat band, which is zero in the limit Q→∞. To figure out the func-
tional form of ~Fl;m;σm

ðxÞ near x = 0, we consider an arbitrary order of
derivatives of it at x = 0. We evaluate ∂px~Fl;m;σm

ðxÞjx¼0 and denote the
smallest p, where the derivative becomes nonzero, by p*. If
j∂px~Fl;m;σm

ðxÞjx¼0j<1 for p ≥ p*, one can deduce that ~Fl;m;σm
ðxÞ∼ xp

�
. This

implies that Wm;σm
∼ 1=r1þp� from (10). On the other hand,

∂p
�
x
~Fl;m;σm

ðxÞjx¼0 can be divergent too. In this case, one can infer that
~Fl;m;σm

ðxÞ is an irrational function of the form xϵ, where p*− 1 < ϵ < p*

because ~Fl;m;σm
ðxÞ vanishes at x = 0. In this case, we haveWm;σm

∼ 1=r1þϵ.
In total, the Wannier function decays algebraically as ~ 1/r1+ϵ, where
p*− 1 < ν ≤ p*. Note that the Wannier functions with different n0 of the
partiallyflat band are not orthogonal to each other in general because not all
the Bloch wave functions in the Brillouin zone participate in constructing
theWannier functions. As a result, while there can beN different Wannier
functionswithdistinctn0 values, onlyN∑l(kl,f− kl,i)/2πnumber of themare
independent of each other. Similar conclusions to the 1D Wannierization
above can be applied to the two-dimensional partially flat bands.
Specifically, we show that the Wannier function corresponding to the 2D
partially flat band exhibits 1/r3/2+ϵ decay far from its center, where ϵ is a
positive number. Detailed derivations are included in Supplementary
Notes 3.

Let us consider semi-infinite graphene as an example. Using (3), we
have the normalized eigenvector component of the partially flat band,

evaluated as vmðkÞ ¼ limQ!1vðQÞm ðkÞ ¼ ½1� 4cos2ðk=2Þ�1=2ð1þ e�ikÞm,
where the orbital index σm is dropped because we have only one orbital per
sublattice. The momentum range for the partially flat band is given by
IPFB = [2π/3, 4π/3]. Outside the partially flat band region, vm(k) = 0. The

Wannier function is obtained by Wmðn� n0Þ ¼
ð1=2πÞ R 4π=3

2π=3 dk vmðkÞeikðn�n0Þ for the m-th dimer line. When n0 = 0, the

Wannier function amplitudes for several values ofm are plotted in Fig. 3(a).
We note that Wm(n) ~ 1/n3/2 for large n as shown in the inset of Fig. 3(a).
This is consistent with that ∂kvm(k) diverges at k = 2π/3 and 4π/3. This
implies that the Wannier function of the semi-infinite graphene with a
zigzag edge decays algebraically( ~ 1/r3/2) along the translationally invariant
direction. In the case of the semi-infinite nodal line semimetal described by
HNL above, the normalized eigenvector’s component of the partially flat

band corresponding to the nz-th layer from the surface is given by vmz
ðkÞ ¼

limQ!1vðQÞmz
ðkÞ ¼ ½ðcos kx þ cos ky � 1Þð3� cos kx � cos kyÞ�1=2

ð2� cos kx � cos kyÞnz inside the nodal ring. Outside the nodal ring,

limQ!1vðQÞmz
ðkÞ ¼ 0. By using it, we obtain the Wannier function for the

partially flat band and observe another algebraic decay proportional to 1/r2

along various directions on the surface, as plotted in Fig. 3(b). This is
consistent with the generic 1/r3/2+ϵ decay of the 2D partially flat band’s
Wannier function shown above. The results reveal another origin of the
Wannier obstruction for a band with the vanishing Chern number. While
the partiallyflat band belongs to a fullflat band, it was shown rigorously that
the Chern number of a full flat band is always zero.

Construction of topological semimetal models
By reversely using the fact that the eigenvector’s components of the partially
flat band are in the form of the polynomial of exponential factors, one can
find a topological semimetal model. The general procedure is as follows. (i)
For a semi-infinite lattice structure, assign aproper index (denotedbym) for
the orbitals in it, increasing away from the boundary. (ii) Design an
unnormalized eigenvector of infinite size (vPFB(k)) for an expected partially
flat band at the zero energy. The components of vPFB(k) are in the form of
f(k)m, where f(k) is a sum of exponential factors eik⋅n. (iii) Construct an
infinite-size Hamiltonian HSI matrix satisfying the eigenvalue equation
HSIvPFB = 0. Here we assume that every element of HSI is a sum of eik⋅n

reflecting the finite hopping range. We expect the Dirac points to appear at
momenta with ∣f(k)∣ = 1. (iv) Transform the Hamiltonian of the semi-
infinite systemHSI into aHamiltonian for abulk systemwithoutboundaries.
This can be done by extracting hopping processes ofHSI in real space away
from the boundary.

Let us obtain a topological semimetal in a square lattice by applying the
above scheme.We consider a 2D semi-infinite rectangular lattice consisting
of two sublattices denoted by A and B and translationally invariant along x
direction. We arrange the partially flat band’s eigenvector component as
vðkÞ ¼ ðv1AðkÞ; v1BðkÞ; � � � ; vmAðkÞ; vmBðkÞ; � � �ÞT, where m is the dimer
line index from the edge. We consider vmAðkÞ ¼ ð�1� aeik � ae�ikÞm�1

and vmB(k) = 0 as a zero energy partially flat band’s eigenvector. One can
note that this choice of the eigenvector corresponds to a Q-CLS, which has
nonzero amplitudes only in a finite region for each givenm. An example of
the Hamiltonian matrix of the semi-infinite system satisfyingHSIv(k) = 0 is
given by

HSI ¼

0 h�k 0 0 � � �
hk 0 1 0 � � �
0 1 0 h�k � � �
0 0 hk 0 � � �
..
. ..

. ..
. ..

. . .
.

0
BBBBBBB@

1
CCCCCCCA
; ð12Þ

where hk = 1+ aeik+ ae−ik. v(k) is normalizable for π/2 < k < 3π/2 when
a < 1 and π=2<k<cos�1ð�1=aÞ or 2π � cos�1ð�1=aÞ<k<3π=2 when a≥1.
Since the boundaries of this momentum interval correspond to the band-
crossing points, the corresponding bulk Hamiltonian
Hbulk ¼ ð1þ 2a cos kx þ cos kyÞσx þ sin kyσy , where σα is the Pauli
matrix, leads to a topological semimetal with four Dirac nodes.

Discussion
By considering semi-infinite systems, we have shown that the partially flat
band appears in a momentum range, where the corresponding Bloch
summations of theQ-CLSs are normalizable. As a result, whenwe construct
Wannier functions, the integration range of the Blochwave functions in the
momentum space is smaller than the entire Brillouin zone, leading to the
algebraically decaying behavior. Therefore, we have demonstrated that the
Wannier obstruction can happen even in a topologically trivial band.

While we have only considered semi-infinite systems, one might
wonder, regarding realistic systems, whether the Wannier obstruction can
be applied to finite systems or not. Here, the term finite system implies that
the system’s size is finite along the directions with broken translational
symmetry. Graphene nanoribbons with finite width are examples. In such
finite systems, where one can construct regular finite-size Bloch Hamilto-
nians, the ghost flat band cannot exist, and each edge band should be
smoothly connected to one of the bulk bands. Therefore, the conventional
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Wannierization with exponentially localized wave packets should be
achieved in these systems. However, we show that the algebraic decaying
behavior dominates in the Wannier function as the system size increases.
This is because the edge modes are unaffected by the system size, while the
bulk mode’s amplitude at each site diminishes as the size grows. As a result,
the Wannier function decays exponentially only extremely far from its
center, where the bulk wave function’s amplitude becomes comparable to
that of theWannier function.As an example,we consider afinite-size zigzag
graphene nanoribbon. Its band structure is drawn in Fig. 3(c) for the ribbon
width Q = 50, where the red and blue bands host nearly flat bands, corre-
sponding to the edge modes, near the zone boundary. By applying a small
perturbation, the red and blue bands are detached so that one can construct
the Wannier function for them properly. Then, the red band’s Wannier
function is plotted in Fig. 3(d) for various dimer lines, which exhibit the
expected algebraic decay.

Data availability
Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.
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